File size: 8,657 Bytes
5f093a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# Copyright 2022 The Music Spectrogram Diffusion Authors.
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
from typing import Any, Callable, List, Optional, Tuple, Union

import numpy as np
import torch

from ...models import T5FilmDecoder
from ...schedulers import DDPMScheduler
from ...utils import is_onnx_available, logging, randn_tensor


if is_onnx_available():
    from ..onnx_utils import OnnxRuntimeModel

from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
from .continous_encoder import SpectrogramContEncoder
from .notes_encoder import SpectrogramNotesEncoder


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

TARGET_FEATURE_LENGTH = 256


class SpectrogramDiffusionPipeline(DiffusionPipeline):
    _optional_components = ["melgan"]

    def __init__(
        self,
        notes_encoder: SpectrogramNotesEncoder,
        continuous_encoder: SpectrogramContEncoder,
        decoder: T5FilmDecoder,
        scheduler: DDPMScheduler,
        melgan: OnnxRuntimeModel if is_onnx_available() else Any,
    ) -> None:
        super().__init__()

        # From MELGAN
        self.min_value = math.log(1e-5)  # Matches MelGAN training.
        self.max_value = 4.0  # Largest value for most examples
        self.n_dims = 128

        self.register_modules(
            notes_encoder=notes_encoder,
            continuous_encoder=continuous_encoder,
            decoder=decoder,
            scheduler=scheduler,
            melgan=melgan,
        )

    def scale_features(self, features, output_range=(-1.0, 1.0), clip=False):
        """Linearly scale features to network outputs range."""
        min_out, max_out = output_range
        if clip:
            features = torch.clip(features, self.min_value, self.max_value)
        # Scale to [0, 1].
        zero_one = (features - self.min_value) / (self.max_value - self.min_value)
        # Scale to [min_out, max_out].
        return zero_one * (max_out - min_out) + min_out

    def scale_to_features(self, outputs, input_range=(-1.0, 1.0), clip=False):
        """Invert by linearly scaling network outputs to features range."""
        min_out, max_out = input_range
        outputs = torch.clip(outputs, min_out, max_out) if clip else outputs
        # Scale to [0, 1].
        zero_one = (outputs - min_out) / (max_out - min_out)
        # Scale to [self.min_value, self.max_value].
        return zero_one * (self.max_value - self.min_value) + self.min_value

    def encode(self, input_tokens, continuous_inputs, continuous_mask):
        tokens_mask = input_tokens > 0
        tokens_encoded, tokens_mask = self.notes_encoder(
            encoder_input_tokens=input_tokens, encoder_inputs_mask=tokens_mask
        )

        continuous_encoded, continuous_mask = self.continuous_encoder(
            encoder_inputs=continuous_inputs, encoder_inputs_mask=continuous_mask
        )

        return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)]

    def decode(self, encodings_and_masks, input_tokens, noise_time):
        timesteps = noise_time
        if not torch.is_tensor(timesteps):
            timesteps = torch.tensor([timesteps], dtype=torch.long, device=input_tokens.device)
        elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
            timesteps = timesteps[None].to(input_tokens.device)

        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
        timesteps = timesteps * torch.ones(input_tokens.shape[0], dtype=timesteps.dtype, device=timesteps.device)

        logits = self.decoder(
            encodings_and_masks=encodings_and_masks, decoder_input_tokens=input_tokens, decoder_noise_time=timesteps
        )
        return logits

    @torch.no_grad()
    def __call__(
        self,
        input_tokens: List[List[int]],
        generator: Optional[torch.Generator] = None,
        num_inference_steps: int = 100,
        return_dict: bool = True,
        output_type: str = "numpy",
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
        callback_steps: int = 1,
    ) -> Union[AudioPipelineOutput, Tuple]:
        if (callback_steps is None) or (
            callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
        ):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

        pred_mel = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims], dtype=np.float32)
        full_pred_mel = np.zeros([1, 0, self.n_dims], np.float32)
        ones = torch.ones((1, TARGET_FEATURE_LENGTH), dtype=bool, device=self.device)

        for i, encoder_input_tokens in enumerate(input_tokens):
            if i == 0:
                encoder_continuous_inputs = torch.from_numpy(pred_mel[:1].copy()).to(
                    device=self.device, dtype=self.decoder.dtype
                )
                # The first chunk has no previous context.
                encoder_continuous_mask = torch.zeros((1, TARGET_FEATURE_LENGTH), dtype=bool, device=self.device)
            else:
                # The full song pipeline does not feed in a context feature, so the mask
                # will be all 0s after the feature converter. Because we know we're
                # feeding in a full context chunk from the previous prediction, set it
                # to all 1s.
                encoder_continuous_mask = ones

            encoder_continuous_inputs = self.scale_features(
                encoder_continuous_inputs, output_range=[-1.0, 1.0], clip=True
            )

            encodings_and_masks = self.encode(
                input_tokens=torch.IntTensor([encoder_input_tokens]).to(device=self.device),
                continuous_inputs=encoder_continuous_inputs,
                continuous_mask=encoder_continuous_mask,
            )

            # Sample encoder_continuous_inputs shaped gaussian noise to begin loop
            x = randn_tensor(
                shape=encoder_continuous_inputs.shape,
                generator=generator,
                device=self.device,
                dtype=self.decoder.dtype,
            )

            # set step values
            self.scheduler.set_timesteps(num_inference_steps)

            # Denoising diffusion loop
            for j, t in enumerate(self.progress_bar(self.scheduler.timesteps)):
                output = self.decode(
                    encodings_and_masks=encodings_and_masks,
                    input_tokens=x,
                    noise_time=t / self.scheduler.config.num_train_timesteps,  # rescale to [0, 1)
                )

                # Compute previous output: x_t -> x_t-1
                x = self.scheduler.step(output, t, x, generator=generator).prev_sample

            mel = self.scale_to_features(x, input_range=[-1.0, 1.0])
            encoder_continuous_inputs = mel[:1]
            pred_mel = mel.cpu().float().numpy()

            full_pred_mel = np.concatenate([full_pred_mel, pred_mel[:1]], axis=1)

            # call the callback, if provided
            if callback is not None and i % callback_steps == 0:
                callback(i, full_pred_mel)

            logger.info("Generated segment", i)

        if output_type == "numpy" and not is_onnx_available():
            raise ValueError(
                "Cannot return output in 'np' format if ONNX is not available. Make sure to have ONNX installed or set 'output_type' to 'mel'."
            )
        elif output_type == "numpy" and self.melgan is None:
            raise ValueError(
                "Cannot return output in 'np' format if melgan component is not defined. Make sure to define `self.melgan` or set 'output_type' to 'mel'."
            )

        if output_type == "numpy":
            output = self.melgan(input_features=full_pred_mel.astype(np.float32))
        else:
            output = full_pred_mel

        if not return_dict:
            return (output,)

        return AudioPipelineOutput(audios=output)