File size: 15,805 Bytes
5f093a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
from typing import Callable, List, Optional, Union

import torch

from ...models import UNet2DModel
from ...schedulers import CMStochasticIterativeScheduler
from ...utils import (
    is_accelerate_available,
    is_accelerate_version,
    logging,
    randn_tensor,
    replace_example_docstring,
)
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        >>> import torch

        >>> from diffusers import ConsistencyModelPipeline

        >>> device = "cuda"
        >>> # Load the cd_imagenet64_l2 checkpoint.
        >>> model_id_or_path = "openai/diffusers-cd_imagenet64_l2"
        >>> pipe = ConsistencyModelPipeline.from_pretrained(model_id_or_path, torch_dtype=torch.float16)
        >>> pipe.to(device)

        >>> # Onestep Sampling
        >>> image = pipe(num_inference_steps=1).images[0]
        >>> image.save("cd_imagenet64_l2_onestep_sample.png")

        >>> # Onestep sampling, class-conditional image generation
        >>> # ImageNet-64 class label 145 corresponds to king penguins
        >>> image = pipe(num_inference_steps=1, class_labels=145).images[0]
        >>> image.save("cd_imagenet64_l2_onestep_sample_penguin.png")

        >>> # Multistep sampling, class-conditional image generation
        >>> # Timesteps can be explicitly specified; the particular timesteps below are from the original Github repo:
        >>> # https://github.com/openai/consistency_models/blob/main/scripts/launch.sh#L77
        >>> image = pipe(num_inference_steps=None, timesteps=[22, 0], class_labels=145).images[0]
        >>> image.save("cd_imagenet64_l2_multistep_sample_penguin.png")
        ```
"""


class ConsistencyModelPipeline(DiffusionPipeline):
    r"""
    Pipeline for consistency models for unconditional or class-conditional image generation, as introduced in [1].

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    [1] Song, Yang and Dhariwal, Prafulla and Chen, Mark and Sutskever, Ilya. "Consistency Models"
    https://arxiv.org/pdf/2303.01469

    Args:
        unet ([`UNet2DModel`]):
            Unconditional or class-conditional U-Net architecture to denoise image latents.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the image latents. Currently only compatible
            with [`CMStochasticIterativeScheduler`].
    """

    def __init__(self, unet: UNet2DModel, scheduler: CMStochasticIterativeScheduler) -> None:
        super().__init__()

        self.register_modules(
            unet=unet,
            scheduler=scheduler,
        )

        self.safety_checker = None

    def enable_sequential_cpu_offload(self, gpu_id=0):
        r"""
        Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
        text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
        `torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
        Note that offloading happens on a submodule basis. Memory savings are higher than with
        `enable_model_cpu_offload`, but performance is lower.
        """
        if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"):
            from accelerate import cpu_offload
        else:
            raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher")

        device = torch.device(f"cuda:{gpu_id}")

        if self.device.type != "cpu":
            self.to("cpu", silence_dtype_warnings=True)
            torch.cuda.empty_cache()  # otherwise we don't see the memory savings (but they probably exist)

        for cpu_offloaded_model in [self.unet]:
            cpu_offload(cpu_offloaded_model, device)

        if self.safety_checker is not None:
            cpu_offload(self.safety_checker, execution_device=device, offload_buffers=True)

    def enable_model_cpu_offload(self, gpu_id=0):
        r"""
        Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
        to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
        method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
        `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
        """
        if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
            from accelerate import cpu_offload_with_hook
        else:
            raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")

        device = torch.device(f"cuda:{gpu_id}")

        if self.device.type != "cpu":
            self.to("cpu", silence_dtype_warnings=True)
            torch.cuda.empty_cache()  # otherwise we don't see the memory savings (but they probably exist)

        hook = None
        for cpu_offloaded_model in [self.unet]:
            _, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)

        if self.safety_checker is not None:
            _, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook)

        # We'll offload the last model manually.
        self.final_offload_hook = hook

    @property
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
    def _execution_device(self):
        r"""
        Returns the device on which the pipeline's models will be executed. After calling
        `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
        hooks.
        """
        if not hasattr(self.unet, "_hf_hook"):
            return self.device
        for module in self.unet.modules():
            if (
                hasattr(module, "_hf_hook")
                and hasattr(module._hf_hook, "execution_device")
                and module._hf_hook.execution_device is not None
            ):
                return torch.device(module._hf_hook.execution_device)
        return self.device

    def prepare_latents(self, batch_size, num_channels, height, width, dtype, device, generator, latents=None):
        shape = (batch_size, num_channels, height, width)
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if latents is None:
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        else:
            latents = latents.to(device=device, dtype=dtype)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents

    # Follows diffusers.VaeImageProcessor.postprocess
    def postprocess_image(self, sample: torch.FloatTensor, output_type: str = "pil"):
        if output_type not in ["pt", "np", "pil"]:
            raise ValueError(
                f"output_type={output_type} is not supported. Make sure to choose one of ['pt', 'np', or 'pil']"
            )

        # Equivalent to diffusers.VaeImageProcessor.denormalize
        sample = (sample / 2 + 0.5).clamp(0, 1)
        if output_type == "pt":
            return sample

        # Equivalent to diffusers.VaeImageProcessor.pt_to_numpy
        sample = sample.cpu().permute(0, 2, 3, 1).numpy()
        if output_type == "np":
            return sample

        # Output_type must be 'pil'
        sample = self.numpy_to_pil(sample)
        return sample

    def prepare_class_labels(self, batch_size, device, class_labels=None):
        if self.unet.config.num_class_embeds is not None:
            if isinstance(class_labels, list):
                class_labels = torch.tensor(class_labels, dtype=torch.int)
            elif isinstance(class_labels, int):
                assert batch_size == 1, "Batch size must be 1 if classes is an int"
                class_labels = torch.tensor([class_labels], dtype=torch.int)
            elif class_labels is None:
                # Randomly generate batch_size class labels
                # TODO: should use generator here? int analogue of randn_tensor is not exposed in ...utils
                class_labels = torch.randint(0, self.unet.config.num_class_embeds, size=(batch_size,))
            class_labels = class_labels.to(device)
        else:
            class_labels = None
        return class_labels

    def check_inputs(self, num_inference_steps, timesteps, latents, batch_size, img_size, callback_steps):
        if num_inference_steps is None and timesteps is None:
            raise ValueError("Exactly one of `num_inference_steps` or `timesteps` must be supplied.")

        if num_inference_steps is not None and timesteps is not None:
            logger.warning(
                f"Both `num_inference_steps`: {num_inference_steps} and `timesteps`: {timesteps} are supplied;"
                " `timesteps` will be used over `num_inference_steps`."
            )

        if latents is not None:
            expected_shape = (batch_size, 3, img_size, img_size)
            if latents.shape != expected_shape:
                raise ValueError(f"The shape of latents is {latents.shape} but is expected to be {expected_shape}.")

        if (callback_steps is None) or (
            callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
        ):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,
        batch_size: int = 1,
        class_labels: Optional[Union[torch.Tensor, List[int], int]] = None,
        num_inference_steps: int = 1,
        timesteps: List[int] = None,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
        callback_steps: int = 1,
    ):
        r"""
        Args:
            batch_size (`int`, *optional*, defaults to 1):
                The number of images to generate.
            class_labels (`torch.Tensor` or `List[int]` or `int`, *optional*):
                Optional class labels for conditioning class-conditional consistency models. Will not be used if the
                model is not class-conditional.
            num_inference_steps (`int`, *optional*, defaults to 1):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            timesteps (`List[int]`, *optional*):
                Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
                timesteps are used. Must be in descending order.
            generator (`torch.Generator`, *optional*):
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
            latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
            callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. The function will be
                called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function will be called. If not specified, the callback will be
                called at every step.

        Examples:

        Returns:
            [`~pipelines.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if `return_dict` is
            True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images.
        """
        # 0. Prepare call parameters
        img_size = self.unet.config.sample_size
        device = self._execution_device

        # 1. Check inputs
        self.check_inputs(num_inference_steps, timesteps, latents, batch_size, img_size, callback_steps)

        # 2. Prepare image latents
        # Sample image latents x_0 ~ N(0, sigma_0^2 * I)
        sample = self.prepare_latents(
            batch_size=batch_size,
            num_channels=self.unet.config.in_channels,
            height=img_size,
            width=img_size,
            dtype=self.unet.dtype,
            device=device,
            generator=generator,
            latents=latents,
        )

        # 3. Handle class_labels for class-conditional models
        class_labels = self.prepare_class_labels(batch_size, device, class_labels=class_labels)

        # 4. Prepare timesteps
        if timesteps is not None:
            self.scheduler.set_timesteps(timesteps=timesteps, device=device)
            timesteps = self.scheduler.timesteps
            num_inference_steps = len(timesteps)
        else:
            self.scheduler.set_timesteps(num_inference_steps)
            timesteps = self.scheduler.timesteps

        # 5. Denoising loop
        # Multistep sampling: implements Algorithm 1 in the paper
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                scaled_sample = self.scheduler.scale_model_input(sample, t)
                model_output = self.unet(scaled_sample, t, class_labels=class_labels, return_dict=False)[0]

                sample = self.scheduler.step(model_output, t, sample, generator=generator)[0]

                # call the callback, if provided
                progress_bar.update()
                if callback is not None and i % callback_steps == 0:
                    callback(i, t, sample)

        # 6. Post-process image sample
        image = self.postprocess_image(sample, output_type=output_type)

        # Offload last model to CPU
        if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
            self.final_offload_hook.offload()

        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)