Spaces:
Paused
Paused
| import gradio as gr | |
| import spaces | |
| from gradio_litmodel3d import LitModel3D | |
| import os | |
| import time | |
| from os import path | |
| import shutil | |
| from datetime import datetime | |
| from safetensors.torch import load_file | |
| from huggingface_hub import hf_hub_download | |
| import torch | |
| import numpy as np | |
| import imageio | |
| import uuid | |
| from easydict import EasyDict as edict | |
| from PIL import Image | |
| from trellis.pipelines import TrellisImageTo3DPipeline | |
| from trellis.representations import Gaussian, MeshExtractResult | |
| from trellis.utils import render_utils, postprocessing_utils | |
| from diffusers import FluxPipeline | |
| from transformers import pipeline | |
| # Hugging Face ํ ํฐ ์ค์ | |
| HF_TOKEN = os.getenv("HF_TOKEN") | |
| if HF_TOKEN is None: | |
| raise ValueError("HF_TOKEN environment variable is not set") | |
| MAX_SEED = np.iinfo(np.int32).max | |
| TMP_DIR = "/tmp/Trellis-demo" | |
| os.makedirs(TMP_DIR, exist_ok=True) | |
| # Setup and initialization code | |
| cache_path = path.join(path.dirname(path.abspath(__file__)), "models") | |
| PERSISTENT_DIR = os.environ.get("PERSISTENT_DIR", ".") | |
| gallery_path = path.join(PERSISTENT_DIR, "gallery") | |
| os.environ["TRANSFORMERS_CACHE"] = cache_path | |
| os.environ["HF_HUB_CACHE"] = cache_path | |
| os.environ["HF_HOME"] = cache_path | |
| os.environ['SPCONV_ALGO'] = 'native' | |
| torch.backends.cuda.matmul.allow_tf32 = True | |
| # ๋ฒ์ญ๊ธฐ ์ด๊ธฐํ | |
| translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en") | |
| class timer: | |
| def __init__(self, method_name="timed process"): | |
| self.method = method_name | |
| def __enter__(self): | |
| self.start = time.time() | |
| print(f"{self.method} starts") | |
| def __exit__(self, exc_type, exc_val, exc_tb): | |
| end = time.time() | |
| print(f"{self.method} took {str(round(end - self.start, 2))}s") | |
| def preprocess_image(image: Image.Image) -> Tuple[str, Image.Image]: | |
| trial_id = str(uuid.uuid4()) | |
| processed_image = pipeline.preprocess_image(image) | |
| processed_image.save(f"{TMP_DIR}/{trial_id}.png") | |
| return trial_id, processed_image | |
| def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict: | |
| return { | |
| 'gaussian': { | |
| **gs.init_params, | |
| '_xyz': gs._xyz.cpu().numpy(), | |
| '_features_dc': gs._features_dc.cpu().numpy(), | |
| '_scaling': gs._scaling.cpu().numpy(), | |
| '_rotation': gs._rotation.cpu().numpy(), | |
| '_opacity': gs._opacity.cpu().numpy(), | |
| }, | |
| 'mesh': { | |
| 'vertices': mesh.vertices.cpu().numpy(), | |
| 'faces': mesh.faces.cpu().numpy(), | |
| }, | |
| 'trial_id': trial_id, | |
| } | |
| def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]: | |
| gs = Gaussian( | |
| aabb=state['gaussian']['aabb'], | |
| sh_degree=state['gaussian']['sh_degree'], | |
| mininum_kernel_size=state['gaussian']['mininum_kernel_size'], | |
| scaling_bias=state['gaussian']['scaling_bias'], | |
| opacity_bias=state['gaussian']['opacity_bias'], | |
| scaling_activation=state['gaussian']['scaling_activation'], | |
| ) | |
| gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda') | |
| gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda') | |
| gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda') | |
| gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda') | |
| gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda') | |
| mesh = edict( | |
| vertices=torch.tensor(state['mesh']['vertices'], device='cuda'), | |
| faces=torch.tensor(state['mesh']['faces'], device='cuda'), | |
| ) | |
| return gs, mesh, state['trial_id'] | |
| def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_strength: float, ss_sampling_steps: int, slat_guidance_strength: float, slat_sampling_steps: int) -> Tuple[dict, str]: | |
| if randomize_seed: | |
| seed = np.random.randint(0, MAX_SEED) | |
| outputs = pipeline.run( | |
| Image.open(f"{TMP_DIR}/{trial_id}.png"), | |
| seed=seed, | |
| formats=["gaussian", "mesh"], | |
| preprocess_image=False, | |
| sparse_structure_sampler_params={ | |
| "steps": ss_sampling_steps, | |
| "cfg_strength": ss_guidance_strength, | |
| }, | |
| slat_sampler_params={ | |
| "steps": slat_sampling_steps, | |
| "cfg_strength": slat_guidance_strength, | |
| }, | |
| ) | |
| video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color'] | |
| video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal'] | |
| video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))] | |
| trial_id = uuid.uuid4() | |
| video_path = f"{TMP_DIR}/{trial_id}.mp4" | |
| os.makedirs(os.path.dirname(video_path), exist_ok=True) | |
| imageio.mimsave(video_path, video, fps=15) | |
| state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], trial_id) | |
| return state, video_path | |
| def extract_glb(state: dict, mesh_simplify: float, texture_size: int) -> Tuple[str, str]: | |
| gs, mesh, trial_id = unpack_state(state) | |
| glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False) | |
| glb_path = f"{TMP_DIR}/{trial_id}.glb" | |
| glb.export(glb_path) | |
| return glb_path, glb_path | |
| def activate_button() -> gr.Button: | |
| return gr.Button(interactive=True) | |
| def deactivate_button() -> gr.Button: | |
| return gr.Button(interactive=False) | |
| def text_to_image(prompt: str, height: int, width: int, steps: int, scales: float, seed: int) -> Image.Image: | |
| # ํ๊ธ ๊ฐ์ง ๋ฐ ๋ฒ์ญ | |
| def contains_korean(text): | |
| return any(ord('๊ฐ') <= ord(c) <= ord('ํฃ') for c in text) | |
| # ํ๋กฌํํธ ์ ์ฒ๋ฆฌ | |
| if contains_korean(prompt): | |
| translated = translator(prompt)[0]['translation_text'] | |
| prompt = translated | |
| # ํ๋กฌํํธ ํ์ ๊ฐ์ | |
| formatted_prompt = f"wbgmsst, 3D, {prompt}, white background" | |
| with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16): | |
| try: | |
| generated_image = pipe( | |
| prompt=[formatted_prompt], | |
| generator=torch.Generator().manual_seed(int(seed)), | |
| num_inference_steps=int(steps), | |
| guidance_scale=float(scales), | |
| height=int(height), | |
| width=int(width), | |
| max_sequence_length=256 | |
| ).images[0] | |
| trial_id = str(uuid.uuid4()) | |
| generated_image.save(f"{TMP_DIR}/{trial_id}.png") | |
| return generated_image | |
| except Exception as e: | |
| print(f"Error in image generation: {str(e)}") | |
| return None | |
| # Gradio Interface | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| gr.Markdown("""## Craft3D""") | |
| with gr.Row(): | |
| with gr.Column(): | |
| text_prompt = gr.Textbox( | |
| label="Text Prompt", | |
| placeholder="Describe what you want to create...", | |
| lines=3 | |
| ) | |
| with gr.Accordion("Image Generation Settings", open=False): | |
| with gr.Row(): | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=1152, | |
| step=64, | |
| value=1024 | |
| ) | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=1152, | |
| step=64, | |
| value=1024 | |
| ) | |
| with gr.Row(): | |
| steps = gr.Slider( | |
| label="Inference Steps", | |
| minimum=6, | |
| maximum=25, | |
| step=1, | |
| value=8 | |
| ) | |
| scales = gr.Slider( | |
| label="Guidance Scale", | |
| minimum=0.0, | |
| maximum=5.0, | |
| step=0.1, | |
| value=3.5 | |
| ) | |
| seed = gr.Number( | |
| label="Seed", | |
| value=lambda: torch.randint(0, MAX_SEED, (1,)).item(), | |
| precision=0 | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
| generate_image_btn = gr.Button("Generate Image") | |
| image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil", height=300) | |
| with gr.Accordion("3D Generation Settings", open=False): | |
| ss_guidance_strength = gr.Slider(0.0, 10.0, label="Structure Guidance Strength", value=7.5, step=0.1) | |
| ss_sampling_steps = gr.Slider(1, 50, label="Structure Sampling Steps", value=12, step=1) | |
| slat_guidance_strength = gr.Slider(0.0, 10.0, label="Latent Guidance Strength", value=3.0, step=0.1) | |
| slat_sampling_steps = gr.Slider(1, 50, label="Latent Sampling Steps", value=12, step=1) | |
| generate_3d_btn = gr.Button("Generate 3D") | |
| with gr.Accordion("GLB Extraction Settings", open=False): | |
| mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01) | |
| texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512) | |
| extract_glb_btn = gr.Button("Extract GLB", interactive=False) | |
| with gr.Column(): | |
| video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300) | |
| model_output = LitModel3D(label="Extracted GLB", exposure=20.0, height=300) | |
| download_glb = gr.DownloadButton(label="Download GLB", interactive=False) | |
| trial_id = gr.Textbox(visible=False) | |
| output_buf = gr.State() | |
| # Handlers | |
| generate_image_btn.click( | |
| text_to_image, | |
| inputs=[text_prompt, height, width, steps, scales, seed], | |
| outputs=[image_prompt] | |
| ).then( | |
| preprocess_image, | |
| inputs=[image_prompt], | |
| outputs=[trial_id, image_prompt] | |
| ) | |
| # ๋๋จธ์ง ํธ๋ค๋ฌ๋ค | |
| image_prompt.upload( | |
| preprocess_image, | |
| inputs=[image_prompt], | |
| outputs=[trial_id, image_prompt], | |
| ) | |
| image_prompt.clear( | |
| lambda: '', | |
| outputs=[trial_id], | |
| ) | |
| generate_3d_btn.click( | |
| image_to_3d, | |
| inputs=[trial_id, seed, randomize_seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps], | |
| outputs=[output_buf, video_output], | |
| ).then( | |
| activate_button, | |
| outputs=[extract_glb_btn], | |
| ) | |
| video_output.clear( | |
| deactivate_button, | |
| outputs=[extract_glb_btn], | |
| ) | |
| extract_glb_btn.click( | |
| extract_glb, | |
| inputs=[output_buf, mesh_simplify, texture_size], | |
| outputs=[model_output, download_glb], | |
| ).then( | |
| activate_button, | |
| outputs=[download_glb], | |
| ) | |
| model_output.clear( | |
| deactivate_button, | |
| outputs=[download_glb], | |
| ) | |
| if __name__ == "__main__": | |
| # 3D ์์ฑ ํ์ดํ๋ผ์ธ | |
| pipeline = TrellisImageTo3DPipeline.from_pretrained( | |
| "JeffreyXiang/TRELLIS-image-large", | |
| use_auth_token=HF_TOKEN | |
| ) | |
| pipeline.cuda() | |
| # ์ด๋ฏธ์ง ์์ฑ ํ์ดํ๋ผ์ธ | |
| pipe = FluxPipeline.from_pretrained( | |
| "black-forest-labs/FLUX.1-dev", | |
| torch_dtype=torch.bfloat16, | |
| use_auth_token=HF_TOKEN | |
| ) | |
| # Hyper-SD LoRA ๋ก๋ | |
| pipe.load_lora_weights( | |
| hf_hub_download( | |
| "ByteDance/Hyper-SD", | |
| "Hyper-FLUX.1-dev-8steps-lora.safetensors", | |
| use_auth_token=HF_TOKEN | |
| ) | |
| ) | |
| pipe.fuse_lora(lora_scale=0.125) | |
| pipe.to(device="cuda", dtype=torch.bfloat16) | |
| try: | |
| pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) | |
| except: | |
| pass | |
| demo.launch(allowed_paths=[PERSISTENT_DIR]) |