import streamlit as st import pandas as pd import plotly.express as px import os import re from datetime import datetime from textblob import TextBlob import networkx as nx from pyvis.network import Network import streamlit.components.v1 as components # Transformers & Semantic Search from transformers import pipeline from sentence_transformers import SentenceTransformer, util import wikipedia # For offline events summary from sklearn.feature_extraction.text import CountVectorizer from sklearn.decomposition import LatentDirichletAllocation from sklearn.manifold import TSNE # -------------------------------------------------------------------------------- # ----------------------- Data Loading and Normalization ------------------------- # -------------------------------------------------------------------------------- @st.cache_data def load_raw_data(filepath): """Load the newline-delimited JSON file into a Pandas DataFrame.""" try: raw_df = pd.read_json(filepath, lines=True) except ValueError as e: st.error("Error reading the JSONL file. Please check the file format.") raise e return raw_df DATA_PATH = "data.jsonl" if not os.path.exists(DATA_PATH): st.error("data.jsonl file not found. Please ensure it is in the same directory as this app.") else: raw_df = load_raw_data(DATA_PATH) st.sidebar.markdown("### Raw Dataset Columns") st.sidebar.write(raw_df.columns.tolist()) # Normalize the nested "data" column if present if 'data' in raw_df.columns: try: df = pd.json_normalize(raw_df['data']) except Exception as e: st.error("Error normalizing the 'data' column.") df = raw_df else: df = raw_df st.sidebar.markdown("### Normalized Data Columns") st.sidebar.write(df.columns.tolist()) # -------------------------------------------------------------------------------- # ------------------------- Column Mapping (Reddit Data) --------------------------- # -------------------------------------------------------------------------------- # Typical Reddit fields: timestamp_col = "created_utc" # Unix timestamp (in seconds) user_col = "author" # Author # For text, prefer "selftext" if available; otherwise, use "title". if "selftext" in df.columns and df["selftext"].notnull().sum() > 0: text_col = "selftext" elif "title" in df.columns: text_col = "title" else: text_col = None # For hashtags: if not provided, extract from text using regex. if "hashtags" not in df.columns: def extract_hashtags(row): text = "" if "title" in row and pd.notnull(row["title"]): text += row["title"] + " " if "selftext" in row and pd.notnull(row["selftext"]): text += row["selftext"] return re.findall(r"#\w+", text) df["hashtags"] = df.apply(extract_hashtags, axis=1) hashtags_col = "hashtags" # Convert Unix timestamp to datetime if available if timestamp_col in df.columns: try: df[timestamp_col] = pd.to_datetime(df[timestamp_col], unit='s') except Exception as e: st.error(f"Error converting timestamp. Check the format of '{timestamp_col}'.") # -------------------------------------------------------------------------------- # --------------------------- Sidebar: Filters & Platform -------------------------- # -------------------------------------------------------------------------------- st.sidebar.header("Filters & Platform") # Platform Selector (simulate multiple platforms) platform = st.sidebar.selectbox("Select Platform", ["Reddit", "Twitter", "Facebook"]) if platform != "Reddit": st.sidebar.info(f"Data for {platform} is not available. Showing Reddit data.") # Date Filter if timestamp_col in df.columns: try: min_date = df[timestamp_col].min().date() max_date = df[timestamp_col].max().date() start_date = st.sidebar.date_input("Start date", min_date, min_value=min_date, max_value=max_date) end_date = st.sidebar.date_input("End date", max_date, min_value=min_date, max_value=max_date) if start_date > end_date: st.sidebar.error("Error: End date must fall after start date.") df = df[(df[timestamp_col].dt.date >= start_date) & (df[timestamp_col].dt.date <= end_date)] except Exception as e: st.sidebar.error("Error processing the timestamp column for filtering.") else: st.sidebar.info(f"No '{timestamp_col}' column found for filtering by date.") # Keyword/Hashtag Search search_term = st.sidebar.text_input("Search for a keyword/hashtag:") if search_term: if text_col in df.columns: df = df[df[text_col].str.contains(search_term, case=False, na=False)] st.sidebar.markdown(f"### Showing results for '{search_term}'") # -------------------------------------------------------------------------------- # ------------------------- Main Dashboard: Basic Visualizations ----------------- # -------------------------------------------------------------------------------- st.title("Social Media Data Analysis Dashboard") st.markdown(""" This dashboard visualizes Reddit data, showcasing trends over time, key contributors, topic embeddings, and more. """) # Summary Metrics total_posts = len(df) st.markdown("### Summary Metrics") st.write("**Total Posts:**", total_posts) if user_col in df.columns: unique_users = df[user_col].nunique() st.write("**Unique Users:**", unique_users) else: st.write("**Unique Users:** Data not available") # Time Series Plot with 7-day Moving Average if timestamp_col in df.columns: st.markdown("### Posts Over Time with Moving Average") df["date"] = df[timestamp_col].dt.date time_series = df.groupby("date").size().reset_index(name="count") time_series["7-day Moving Avg"] = time_series["count"].rolling(window=7).mean() fig_time = px.line(time_series, x="date", y=["count", "7-day Moving Avg"], labels={"date": "Date", "value": "Number of Posts"}, title="Posts Over Time with 7-day Moving Average") st.plotly_chart(fig_time) else: st.info("No timestamp data available for time series plot.") # Pie Chart of Top Contributors (using subreddit if available, otherwise author) community_col = "subreddit" if "subreddit" in df.columns else user_col if community_col in df.columns: st.markdown("### Top Communities/Accounts Contributions") contributions = df[community_col].value_counts().reset_index() contributions.columns = [community_col, "count"] top_contributions = contributions.head(10) fig_pie = px.pie(top_contributions, values="count", names=community_col, title="Top 10 Contributors") st.plotly_chart(fig_pie) else: st.info("No community or account data available for contributor pie chart.") # Top Hashtags Bar Chart if hashtags_col in df.columns: st.markdown("### Top Hashtags") hashtags_exploded = df.explode(hashtags_col) hashtags_exploded = hashtags_exploded[hashtags_exploded[hashtags_col] != ""] top_hashtags = hashtags_exploded[hashtags_col].value_counts().reset_index() top_hashtags.columns = ['hashtag', 'count'] if not top_hashtags.empty: fig_hashtags = px.bar(top_hashtags.head(10), x='hashtag', y='count', labels={'hashtag': 'Hashtag', 'count': 'Frequency'}, title="Top 10 Hashtags") st.plotly_chart(fig_hashtags) else: st.info("No hashtag data available.") else: st.info("No 'hashtags' column found in the dataset.") # Sentiment Analysis on Text Data if text_col is not None and text_col in df.columns: st.markdown("### Sentiment Analysis") df['sentiment'] = df[text_col].apply(lambda x: TextBlob(x).sentiment.polarity if isinstance(x, str) else 0) fig_sentiment = px.histogram(df, x='sentiment', nbins=30, labels={'sentiment': 'Sentiment Polarity'}, title="Sentiment Polarity Distribution") st.plotly_chart(fig_sentiment) else: st.info(f"No '{text_col}' column available for sentiment analysis.") # -------------------------------------------------------------------------------- # ------------------------------ Additional Features ----------------------------- # -------------------------------------------------------------------------------- # (a) Topic Embedding Visualization using LDA + TSNE st.markdown("## Topic Embedding Visualization") if text_col in df.columns: texts = df[text_col].dropna().sample(n=min(500, len(df)), random_state=42).tolist() vectorizer = CountVectorizer(stop_words='english', max_features=1000) X = vectorizer.fit_transform(texts) lda = LatentDirichletAllocation(n_components=5, random_state=42) topic_matrix = lda.fit_transform(X) dominant_topic = topic_matrix.argmax(axis=1) tsne_model = TSNE(n_components=2, random_state=42) tsne_values = tsne_model.fit_transform(topic_matrix) tsne_df = pd.DataFrame(tsne_values, columns=["x", "y"]) tsne_df["Dominant Topic"] = dominant_topic.astype(str) fig_topics = px.scatter(tsne_df, x="x", y="y", color="Dominant Topic", title="TSNE Embedding of Topics") st.plotly_chart(fig_topics) else: st.info("No text data available for topic embedding.") # (b) GenAI Summary for Time Series Plot st.markdown("## GenAI Summary for Time Series") if timestamp_col in df.columns: time_series = df.groupby(df[timestamp_col].dt.date).size().reset_index(name="count") if not time_series.empty: start = time_series["created_utc"].min() end = time_series["created_utc"].max() avg_posts = time_series["count"].mean() peak = time_series.loc[time_series["count"].idxmax()] description = (f"From {start} to {end}, the average number of posts per day was {avg_posts:.1f}. " f"The highest activity was on {peak['created_utc']} with {peak['count']} posts.") st.write("Time Series Description:") st.write(description) # Use a smaller, faster summarization model ts_summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6") try: ts_summary = ts_summarizer( description, max_length=80, min_length=40, do_sample=False )[0]['summary_text'] st.markdown("**GenAI Summary:**") st.write(ts_summary) except Exception as e: st.error("Error generating time series summary.") else: st.info("Time series data not available for summarization.") else: st.info("No timestamp column available for time series summary.") # (c) Offline Events from Wikipedia st.markdown("## Offline Events from Wikipedia") wiki_topic = st.text_input("Enter a topic to fetch offline events (e.g., 'Russian invasion of Ukraine'):") if wiki_topic: try: wiki_summary = wikipedia.summary(wiki_topic, sentences=5) st.markdown(f"**Wikipedia Summary for '{wiki_topic}':**") st.write(wiki_summary) except Exception as e: st.error("Error retrieving Wikipedia data. Please check the topic name.") # (d) Semantic Search on Posts using Sentence Transformers st.markdown("## Semantic Search on Posts") search_query = st.text_input("Enter your semantic search query:") if search_query and text_col in df.columns: @st.cache_data def get_post_embeddings(texts): # Use a smaller, faster model model = SentenceTransformer("sentence-transformers/all-distilroberta-v1") return model.encode(texts, convert_to_tensor=True) posts = df[text_col].dropna().tolist() embeddings = get_post_embeddings(posts) model = SentenceTransformer("sentence-transformers/all-distilroberta-v1") query_embedding = model.encode(search_query, convert_to_tensor=True) cos_scores = util.cos_sim(query_embedding, embeddings)[0] top_results = cos_scores.topk(5) st.markdown("**Top Matching Posts:**") for score, idx in zip(top_results.values, top_results.indices): st.write(f"Score: {score.item():.3f}") st.write(posts[idx]) st.write("---") # (e) AI-Generated Summary of Posts st.markdown("## AI-Generated Summary of Posts") if text_col in df.columns: summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6") def generate_summary(text, summarizer, max_chunk_length=1000): chunks, current_chunk = [], "" for sentence in text.split('. '): sentence = sentence.strip() + ". " if len(current_chunk) + len(sentence) <= max_chunk_length: current_chunk += sentence else: chunks.append(current_chunk.strip()) current_chunk = sentence if current_chunk: chunks.append(current_chunk.strip()) summaries = [] for chunk in chunks: if len(chunk) > 50: summary_chunk = summarizer( chunk, max_length=150, min_length=40, do_sample=False )[0]['summary_text'] summaries.append(summary_chunk) combined_summary = " ".join(summaries) final_summary = summarizer( combined_summary, max_length=150, min_length=40, do_sample=False )[0]['summary_text'] return final_summary sample_text = " ".join(df[text_col].dropna().sample(n=min(10, len(df)), random_state=42).tolist()) if sample_text: final_summary = generate_summary(sample_text, summarizer, max_chunk_length=1000) st.write(final_summary) else: st.info("Not enough text data available for summarization.") else: st.info("No text data available for AI summarization.") # -------------------------------------------------------------------------------- # ------------------------------- End of Dashboard ------------------------------- # -------------------------------------------------------------------------------- st.markdown("### End of Dashboard") st.markdown(""" This dashboard is a prototype implementation for analyzing Reddit social media data. It demonstrates advanced trend analysis, contributor insights, topic embeddings, GenAI summaries, offline event linking, and semantic search functionality **using faster models**. """)