Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,327 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import plotly.express as px
|
4 |
+
import os
|
5 |
+
import re
|
6 |
+
from datetime import datetime
|
7 |
+
from textblob import TextBlob
|
8 |
+
import networkx as nx
|
9 |
+
from pyvis.network import Network
|
10 |
+
import streamlit.components.v1 as components
|
11 |
+
|
12 |
+
# Transformers & Semantic Search
|
13 |
+
from transformers import pipeline
|
14 |
+
from sentence_transformers import SentenceTransformer, util
|
15 |
+
import wikipedia # For offline events summary
|
16 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
17 |
+
from sklearn.decomposition import LatentDirichletAllocation
|
18 |
+
from sklearn.manifold import TSNE
|
19 |
+
|
20 |
+
# --------------------------------------------------------------------------------
|
21 |
+
# ----------------------- Data Loading and Normalization -------------------------
|
22 |
+
# --------------------------------------------------------------------------------
|
23 |
+
@st.cache_data
|
24 |
+
def load_raw_data(filepath):
|
25 |
+
"""Load the newline-delimited JSON file into a Pandas DataFrame."""
|
26 |
+
try:
|
27 |
+
raw_df = pd.read_json(filepath, lines=True)
|
28 |
+
except ValueError as e:
|
29 |
+
st.error("Error reading the JSONL file. Please check the file format.")
|
30 |
+
raise e
|
31 |
+
return raw_df
|
32 |
+
|
33 |
+
DATA_PATH = "data.jsonl"
|
34 |
+
if not os.path.exists(DATA_PATH):
|
35 |
+
st.error("data.jsonl file not found. Please ensure it is in the same directory as this app.")
|
36 |
+
else:
|
37 |
+
raw_df = load_raw_data(DATA_PATH)
|
38 |
+
|
39 |
+
st.sidebar.markdown("### Raw Dataset Columns")
|
40 |
+
st.sidebar.write(raw_df.columns.tolist())
|
41 |
+
|
42 |
+
# Normalize the nested "data" column if present
|
43 |
+
if 'data' in raw_df.columns:
|
44 |
+
try:
|
45 |
+
df = pd.json_normalize(raw_df['data'])
|
46 |
+
except Exception as e:
|
47 |
+
st.error("Error normalizing the 'data' column.")
|
48 |
+
df = raw_df
|
49 |
+
else:
|
50 |
+
df = raw_df
|
51 |
+
|
52 |
+
st.sidebar.markdown("### Normalized Data Columns")
|
53 |
+
st.sidebar.write(df.columns.tolist())
|
54 |
+
|
55 |
+
# --------------------------------------------------------------------------------
|
56 |
+
# ------------------------- Column Mapping (Reddit Data) ---------------------------
|
57 |
+
# --------------------------------------------------------------------------------
|
58 |
+
# Typical Reddit fields:
|
59 |
+
timestamp_col = "created_utc" # Unix timestamp (in seconds)
|
60 |
+
user_col = "author" # Author
|
61 |
+
|
62 |
+
# For text, prefer "selftext" if available; otherwise, use "title".
|
63 |
+
if "selftext" in df.columns and df["selftext"].notnull().sum() > 0:
|
64 |
+
text_col = "selftext"
|
65 |
+
elif "title" in df.columns:
|
66 |
+
text_col = "title"
|
67 |
+
else:
|
68 |
+
text_col = None
|
69 |
+
|
70 |
+
# For hashtags: if not provided, extract from text using regex.
|
71 |
+
if "hashtags" not in df.columns:
|
72 |
+
def extract_hashtags(row):
|
73 |
+
text = ""
|
74 |
+
if "title" in row and pd.notnull(row["title"]):
|
75 |
+
text += row["title"] + " "
|
76 |
+
if "selftext" in row and pd.notnull(row["selftext"]):
|
77 |
+
text += row["selftext"]
|
78 |
+
return re.findall(r"#\w+", text)
|
79 |
+
df["hashtags"] = df.apply(extract_hashtags, axis=1)
|
80 |
+
hashtags_col = "hashtags"
|
81 |
+
|
82 |
+
# Convert Unix timestamp to datetime if available
|
83 |
+
if timestamp_col in df.columns:
|
84 |
+
try:
|
85 |
+
df[timestamp_col] = pd.to_datetime(df[timestamp_col], unit='s')
|
86 |
+
except Exception as e:
|
87 |
+
st.error(f"Error converting timestamp. Check the format of '{timestamp_col}'.")
|
88 |
+
|
89 |
+
# --------------------------------------------------------------------------------
|
90 |
+
# --------------------------- Sidebar: Filters & Platform --------------------------
|
91 |
+
# --------------------------------------------------------------------------------
|
92 |
+
st.sidebar.header("Filters & Platform")
|
93 |
+
|
94 |
+
# Platform Selector (simulate multiple platforms)
|
95 |
+
platform = st.sidebar.selectbox("Select Platform", ["Reddit", "Twitter", "Facebook"])
|
96 |
+
if platform != "Reddit":
|
97 |
+
st.sidebar.info(f"Data for {platform} is not available. Showing Reddit data.")
|
98 |
+
|
99 |
+
# Date Filter
|
100 |
+
if timestamp_col in df.columns:
|
101 |
+
try:
|
102 |
+
min_date = df[timestamp_col].min().date()
|
103 |
+
max_date = df[timestamp_col].max().date()
|
104 |
+
start_date = st.sidebar.date_input("Start date", min_date, min_value=min_date, max_value=max_date)
|
105 |
+
end_date = st.sidebar.date_input("End date", max_date, min_value=min_date, max_value=max_date)
|
106 |
+
if start_date > end_date:
|
107 |
+
st.sidebar.error("Error: End date must fall after start date.")
|
108 |
+
df = df[(df[timestamp_col].dt.date >= start_date) & (df[timestamp_col].dt.date <= end_date)]
|
109 |
+
except Exception as e:
|
110 |
+
st.sidebar.error("Error processing the timestamp column for filtering.")
|
111 |
+
else:
|
112 |
+
st.sidebar.info(f"No '{timestamp_col}' column found for filtering by date.")
|
113 |
+
|
114 |
+
# Keyword/Hashtag Search
|
115 |
+
search_term = st.sidebar.text_input("Search for a keyword/hashtag:")
|
116 |
+
if search_term:
|
117 |
+
if text_col in df.columns:
|
118 |
+
df = df[df[text_col].str.contains(search_term, case=False, na=False)]
|
119 |
+
st.sidebar.markdown(f"### Showing results for '{search_term}'")
|
120 |
+
|
121 |
+
# --------------------------------------------------------------------------------
|
122 |
+
# ------------------------- Main Dashboard: Basic Visualizations -----------------
|
123 |
+
# --------------------------------------------------------------------------------
|
124 |
+
st.title("Social Media Data Analysis Dashboard")
|
125 |
+
st.markdown("""
|
126 |
+
This dashboard visualizes Reddit data, showcasing trends over time, key contributors, topic embeddings, and more.
|
127 |
+
""")
|
128 |
+
|
129 |
+
# Summary Metrics
|
130 |
+
total_posts = len(df)
|
131 |
+
st.markdown("### Summary Metrics")
|
132 |
+
st.write("**Total Posts:**", total_posts)
|
133 |
+
if user_col in df.columns:
|
134 |
+
unique_users = df[user_col].nunique()
|
135 |
+
st.write("**Unique Users:**", unique_users)
|
136 |
+
else:
|
137 |
+
st.write("**Unique Users:** Data not available")
|
138 |
+
|
139 |
+
# Time Series Plot with 7-day Moving Average
|
140 |
+
if timestamp_col in df.columns:
|
141 |
+
st.markdown("### Posts Over Time with Moving Average")
|
142 |
+
df["date"] = df[timestamp_col].dt.date
|
143 |
+
time_series = df.groupby("date").size().reset_index(name="count")
|
144 |
+
time_series["7-day Moving Avg"] = time_series["count"].rolling(window=7).mean()
|
145 |
+
fig_time = px.line(time_series, x="date", y=["count", "7-day Moving Avg"],
|
146 |
+
labels={"date": "Date", "value": "Number of Posts"},
|
147 |
+
title="Posts Over Time with 7-day Moving Average")
|
148 |
+
st.plotly_chart(fig_time)
|
149 |
+
else:
|
150 |
+
st.info("No timestamp data available for time series plot.")
|
151 |
+
|
152 |
+
# Pie Chart of Top Contributors (using subreddit if available, otherwise author)
|
153 |
+
community_col = "subreddit" if "subreddit" in df.columns else user_col
|
154 |
+
if community_col in df.columns:
|
155 |
+
st.markdown("### Top Communities/Accounts Contributions")
|
156 |
+
contributions = df[community_col].value_counts().reset_index()
|
157 |
+
contributions.columns = [community_col, "count"]
|
158 |
+
top_contributions = contributions.head(10)
|
159 |
+
fig_pie = px.pie(top_contributions, values="count", names=community_col,
|
160 |
+
title="Top 10 Contributors")
|
161 |
+
st.plotly_chart(fig_pie)
|
162 |
+
else:
|
163 |
+
st.info("No community or account data available for contributor pie chart.")
|
164 |
+
|
165 |
+
# Top Hashtags Bar Chart
|
166 |
+
if hashtags_col in df.columns:
|
167 |
+
st.markdown("### Top Hashtags")
|
168 |
+
hashtags_exploded = df.explode(hashtags_col)
|
169 |
+
hashtags_exploded = hashtags_exploded[hashtags_exploded[hashtags_col] != ""]
|
170 |
+
top_hashtags = hashtags_exploded[hashtags_col].value_counts().reset_index()
|
171 |
+
top_hashtags.columns = ['hashtag', 'count']
|
172 |
+
if not top_hashtags.empty:
|
173 |
+
fig_hashtags = px.bar(top_hashtags.head(10), x='hashtag', y='count',
|
174 |
+
labels={'hashtag': 'Hashtag', 'count': 'Frequency'},
|
175 |
+
title="Top 10 Hashtags")
|
176 |
+
st.plotly_chart(fig_hashtags)
|
177 |
+
else:
|
178 |
+
st.info("No hashtag data available.")
|
179 |
+
else:
|
180 |
+
st.info("No 'hashtags' column found in the dataset.")
|
181 |
+
|
182 |
+
# Sentiment Analysis on Text Data
|
183 |
+
if text_col is not None and text_col in df.columns:
|
184 |
+
st.markdown("### Sentiment Analysis")
|
185 |
+
df['sentiment'] = df[text_col].apply(lambda x: TextBlob(x).sentiment.polarity if isinstance(x, str) else 0)
|
186 |
+
fig_sentiment = px.histogram(df, x='sentiment', nbins=30,
|
187 |
+
labels={'sentiment': 'Sentiment Polarity'},
|
188 |
+
title="Sentiment Polarity Distribution")
|
189 |
+
st.plotly_chart(fig_sentiment)
|
190 |
+
else:
|
191 |
+
st.info(f"No '{text_col}' column available for sentiment analysis.")
|
192 |
+
|
193 |
+
# --------------------------------------------------------------------------------
|
194 |
+
# ---------------------------- Optional Features ---------------------------------
|
195 |
+
# Use sidebar checkboxes to toggle optional features
|
196 |
+
# --------------------------------------------------------------------------------
|
197 |
+
st.sidebar.markdown("### Optional Features")
|
198 |
+
show_topic_embedding = st.sidebar.checkbox("Topic Embedding Visualization")
|
199 |
+
show_ts_genai_summary = st.sidebar.checkbox("GenAI Summary for Time Series")
|
200 |
+
show_offline_events = st.sidebar.checkbox("Offline Events (Wikipedia)")
|
201 |
+
show_semantic_search = st.sidebar.checkbox("Semantic Search on Posts")
|
202 |
+
|
203 |
+
# ---------------------------------------------------------------------
|
204 |
+
# (a) Topic Embedding Visualization using LDA + TSNE
|
205 |
+
# ---------------------------------------------------------------------
|
206 |
+
if show_topic_embedding:
|
207 |
+
st.markdown("## Topic Embedding Visualization")
|
208 |
+
if text_col in df.columns:
|
209 |
+
texts = df[text_col].dropna().sample(n=min(500, len(df)), random_state=42).tolist()
|
210 |
+
vectorizer = CountVectorizer(stop_words='english', max_features=1000)
|
211 |
+
X = vectorizer.fit_transform(texts)
|
212 |
+
lda = LatentDirichletAllocation(n_components=5, random_state=42)
|
213 |
+
topic_matrix = lda.fit_transform(X)
|
214 |
+
dominant_topic = topic_matrix.argmax(axis=1)
|
215 |
+
tsne_model = TSNE(n_components=2, random_state=42)
|
216 |
+
tsne_values = tsne_model.fit_transform(topic_matrix)
|
217 |
+
tsne_df = pd.DataFrame(tsne_values, columns=["x", "y"])
|
218 |
+
tsne_df["Dominant Topic"] = dominant_topic.astype(str)
|
219 |
+
fig_topics = px.scatter(tsne_df, x="x", y="y", color="Dominant Topic",
|
220 |
+
title="TSNE Embedding of Topics")
|
221 |
+
st.plotly_chart(fig_topics)
|
222 |
+
else:
|
223 |
+
st.info("No text data available for topic embedding.")
|
224 |
+
|
225 |
+
# ---------------------------------------------------------------------
|
226 |
+
# (b) GenAI Summary for Time Series Plot
|
227 |
+
# ---------------------------------------------------------------------
|
228 |
+
if show_ts_genai_summary:
|
229 |
+
st.markdown("## GenAI Summary for Time Series")
|
230 |
+
if not time_series.empty:
|
231 |
+
start = time_series["date"].min()
|
232 |
+
end = time_series["date"].max()
|
233 |
+
avg_posts = time_series["count"].mean()
|
234 |
+
peak = time_series.loc[time_series["count"].idxmax()]
|
235 |
+
description = (f"From {start} to {end}, the average number of posts per day was {avg_posts:.1f}. "
|
236 |
+
f"The highest activity was on {peak['date']} with {peak['count']} posts.")
|
237 |
+
st.write("Time Series Description:")
|
238 |
+
st.write(description)
|
239 |
+
ts_summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
240 |
+
try:
|
241 |
+
ts_summary = ts_summarizer(description, max_length=80, min_length=40, do_sample=False)[0]['summary_text']
|
242 |
+
st.markdown("**GenAI Summary:**")
|
243 |
+
st.write(ts_summary)
|
244 |
+
except Exception as e:
|
245 |
+
st.error("Error generating time series summary.")
|
246 |
+
else:
|
247 |
+
st.info("Time series data not available for summarization.")
|
248 |
+
|
249 |
+
# ---------------------------------------------------------------------
|
250 |
+
# (d) Offline Events from Wikipedia for a Given Topic
|
251 |
+
# ---------------------------------------------------------------------
|
252 |
+
if show_offline_events:
|
253 |
+
st.markdown("## Offline Events from Wikipedia")
|
254 |
+
wiki_topic = st.text_input("Enter a topic to fetch offline events (e.g., 'Russian invasion of Ukraine'):")
|
255 |
+
if wiki_topic:
|
256 |
+
try:
|
257 |
+
wiki_summary = wikipedia.summary(wiki_topic, sentences=5)
|
258 |
+
st.markdown(f"**Wikipedia Summary for '{wiki_topic}':**")
|
259 |
+
st.write(wiki_summary)
|
260 |
+
except Exception as e:
|
261 |
+
st.error("Error retrieving Wikipedia data. Please check the topic name.")
|
262 |
+
|
263 |
+
# ---------------------------------------------------------------------
|
264 |
+
# (f) Semantic Search on Posts using Sentence Transformers
|
265 |
+
# ---------------------------------------------------------------------
|
266 |
+
if show_semantic_search:
|
267 |
+
st.markdown("## Semantic Search on Posts")
|
268 |
+
search_query = st.text_input("Enter your semantic search query:")
|
269 |
+
if search_query and text_col in df.columns:
|
270 |
+
@st.cache_data
|
271 |
+
def get_post_embeddings(texts):
|
272 |
+
model = SentenceTransformer("all-MiniLM-L6-v2")
|
273 |
+
return model.encode(texts, convert_to_tensor=True)
|
274 |
+
posts = df[text_col].dropna().tolist()
|
275 |
+
embeddings = get_post_embeddings(posts)
|
276 |
+
query_embedding = SentenceTransformer("all-MiniLM-L6-v2").encode(search_query, convert_to_tensor=True)
|
277 |
+
cos_scores = util.cos_sim(query_embedding, embeddings)[0]
|
278 |
+
top_results = cos_scores.topk(5)
|
279 |
+
st.markdown("**Top Matching Posts:**")
|
280 |
+
for score, idx in zip(top_results.values, top_results.indices):
|
281 |
+
st.write(f"Score: {score.item():.3f}")
|
282 |
+
st.write(posts[idx])
|
283 |
+
st.write("---")
|
284 |
+
|
285 |
+
# ---------------------------------------------------------------------
|
286 |
+
# (Optional) AI-Generated Summary on Posts (Existing Feature)
|
287 |
+
# ---------------------------------------------------------------------
|
288 |
+
st.markdown("## AI-Generated Summary of Posts")
|
289 |
+
if text_col in df.columns:
|
290 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
291 |
+
def generate_summary(text, summarizer, max_chunk_length=1000):
|
292 |
+
chunks, current_chunk = [], ""
|
293 |
+
for sentence in text.split('. '):
|
294 |
+
sentence = sentence.strip() + ". "
|
295 |
+
if len(current_chunk) + len(sentence) <= max_chunk_length:
|
296 |
+
current_chunk += sentence
|
297 |
+
else:
|
298 |
+
chunks.append(current_chunk.strip())
|
299 |
+
current_chunk = sentence
|
300 |
+
if current_chunk:
|
301 |
+
chunks.append(current_chunk.strip())
|
302 |
+
summaries = []
|
303 |
+
for chunk in chunks:
|
304 |
+
if len(chunk) > 50:
|
305 |
+
summary_chunk = summarizer(chunk, max_length=150, min_length=40, do_sample=False)[0]['summary_text']
|
306 |
+
summaries.append(summary_chunk)
|
307 |
+
combined_summary = " ".join(summaries)
|
308 |
+
final_summary = summarizer(combined_summary, max_length=150, min_length=40, do_sample=False)[0]['summary_text']
|
309 |
+
return final_summary
|
310 |
+
|
311 |
+
sample_text = " ".join(df[text_col].dropna().sample(n=min(10, len(df)), random_state=42).tolist())
|
312 |
+
if sample_text:
|
313 |
+
final_summary = generate_summary(sample_text, summarizer, max_chunk_length=1000)
|
314 |
+
st.write(final_summary)
|
315 |
+
else:
|
316 |
+
st.info("Not enough text data available for summarization.")
|
317 |
+
else:
|
318 |
+
st.info("No text data available for AI summarization.")
|
319 |
+
|
320 |
+
# --------------------------------------------------------------------------------
|
321 |
+
# ------------------------------- End of Dashboard -------------------------------
|
322 |
+
# --------------------------------------------------------------------------------
|
323 |
+
st.markdown("### End of Dashboard")
|
324 |
+
st.markdown("""
|
325 |
+
This dashboard is a prototype implementation for analyzing Reddit social media data.
|
326 |
+
It demonstrates advanced trend analysis, contributor insights, topic embeddings, GenAI summaries, offline event linking, and semantic search functionality.
|
327 |
+
""")
|