Spaces:
Sleeping
Sleeping
File size: 1,391 Bytes
5ab6ff3 7408b25 5ab6ff3 8feb7e3 5ab6ff3 7d49c89 5ab6ff3 8feb7e3 5ab6ff3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
import gradio as gr
from huggingface_hub import from_pretrained_fastai
from fastai.vision.all import *
repo_id = "hugginglearners/flowers_101_convnext_model"
learn = from_pretrained_fastai(repo_id)
labels = learn.dls.vocab
EXAMPLES_PATH = Path('./examples')
def predict(img):
img = PILImage.create(img)
_pred, _pred_w_idx, probs = learn.predict(img)
# gradio doesn't support tensors, so converting to float
labels_probs = {labels[i]: float(probs[i]) for i, _ in enumerate(labels)}
return labels_probs
interface_options = {
"title": "Identify which flower it is?",
"description": "I am terribly bad at remembering names of flowers and trees and it's often difficult to fathom how diverse our natural world is. There are over 5,000 species of mammals, 10,000 species of birds, 30,000 species of fish – and astonishingly, over 400,000 different types of flowers.\n Identify which flower variety it is by uploading your images.",
"interpretation": "default",
"layout": "horizontal",
"allow_flagging": "never",
"examples": [f'{EXAMPLES_PATH}/{f.name}' for f in EXAMPLES_PATH.iterdir()],
}
demo = gr.Interface(
fn=predict,
inputs=gr.inputs.Image(shape=(192, 192)),
outputs=gr.outputs.Label(num_top_classes=3),
**interface_options,
)
launch_options = {
"enable_queue": True,
"share": True,
}
demo.launch(**launch_options) |