kunishou commited on
Commit
0457b99
·
1 Parent(s): eefad01

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -151
app.py DELETED
@@ -1,151 +0,0 @@
1
- import torch
2
- from peft import PeftModel
3
- import transformers
4
- import gradio as gr
5
-
6
- assert (
7
- "LlamaTokenizer" in transformers._import_structure["models.llama"]
8
- ), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
9
- from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
10
-
11
- BASE_MODEL = "decapoda-research/llama-7b-hf"
12
-
13
- tokenizer = LlamaTokenizer.from_pretrained(BASE_MODEL,device_map={'': 0})
14
-
15
- LORA_WEIGHTS = "kunishou/Japanese-Alpaca-LoRA-7b-v0"
16
-
17
- if BASE_MODEL == "decapoda-research/llama-7b-hf":
18
- model_param = "7B"
19
- elif BASE_MODEL == "decapoda-research/llama-13b-hf":
20
- model_param = "13B"
21
- elif BASE_MODEL == "decapoda-research/llama-30b-hf":
22
- model_param = "30B"
23
-
24
- if torch.cuda.is_available():
25
- device = "cuda"
26
- else:
27
- device = "cpu"
28
-
29
- try:
30
- if torch.backends.mps.is_available():
31
- device = "mps"
32
- except:
33
- pass
34
-
35
- if device == "cuda":
36
- model = LlamaForCausalLM.from_pretrained(
37
- BASE_MODEL,
38
- load_in_8bit=True,
39
- torch_dtype=torch.float16,
40
- # device_map="auto",
41
- device_map={'': 0},
42
- )
43
- model = PeftModel.from_pretrained(model, LORA_WEIGHTS, torch_dtype=torch.float16, device_map={'': 0},)
44
- elif device == "mps":
45
- model = LlamaForCausalLM.from_pretrained(
46
- BASE_MODEL,
47
- # device_map={"": device},
48
- device_map={'': 0},
49
- torch_dtype=torch.float16,
50
- )
51
- model = PeftModel.from_pretrained(
52
- model,
53
- LORA_WEIGHTS,
54
- # device_map={"": device},
55
- device_map={'': 0},
56
- torch_dtype=torch.float16,
57
- )
58
- else:
59
- model = LlamaForCausalLM.from_pretrained(
60
- BASE_MODEL,
61
- # device_map={"": device},
62
- device_map={'': 0},
63
- low_cpu_mem_usage=True
64
- )
65
- model = PeftModel.from_pretrained(
66
- model,
67
- LORA_WEIGHTS,
68
- # device_map={"": device},
69
- device_map={'': 0},
70
- )
71
-
72
-
73
- def generate_prompt(instruction, input=None):
74
- if input:
75
- return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
76
- ### Instruction:
77
- {instruction}
78
- ### Input:
79
- {input}
80
- ### Response:"""
81
- else:
82
- return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
83
- ### Instruction:
84
- {instruction}
85
- ### Response:"""
86
-
87
-
88
- model.eval()
89
- if torch.__version__ >= "2":
90
- model = torch.compile(model)
91
-
92
-
93
- def evaluate(
94
- instruction,
95
- input=None,
96
- temperature=0.1,
97
- top_p=0.75,
98
- top_k=40,
99
- num_beams=4,
100
- max_new_tokens=256,
101
- **kwargs,
102
- ):
103
- prompt = generate_prompt(instruction, input)
104
- inputs = tokenizer(prompt, return_tensors="pt")
105
- input_ids = inputs["input_ids"].to(device)
106
- generation_config = GenerationConfig(
107
- temperature=temperature,
108
- top_p=top_p,
109
- top_k=top_k,
110
- num_beams=num_beams,
111
- no_repeat_ngram_size=3,
112
- **kwargs,
113
- )
114
-
115
- with torch.no_grad():
116
- generation_output = model.generate(
117
- input_ids=input_ids,
118
- generation_config=generation_config,
119
- return_dict_in_generate=True,
120
- output_scores=True,
121
- max_new_tokens=max_new_tokens,
122
- )
123
- s = generation_output.sequences[0]
124
- output = tokenizer.decode(s)
125
- return output.split("### Response:")[1].strip()
126
-
127
-
128
- gr.Interface(
129
- fn=evaluate,
130
- inputs=[
131
- gr.components.Textbox(
132
- lines=2, label="Instruction", placeholder="Tell me about alpacas."
133
- ),
134
- gr.components.Textbox(lines=2, label="Input", placeholder="none"),
135
- gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"),
136
- # gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"),
137
- # gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"),
138
- gr.components.Slider(minimum=1, maximum=4, step=1, value=4, label="Beams"),
139
- gr.components.Slider(
140
- minimum=1, maximum=512, step=1, value=256, label="Max tokens"
141
- ),
142
- ],
143
- outputs=[
144
- gr.inputs.Textbox(
145
- lines=8,
146
- label="Output",
147
- )
148
- ],
149
- title=f"🦙🌲🌸 Japanese-Alpaca-LoRA-{model_param} 🌸",
150
- description=f"Alpaca-LoRA is a {model_param}-parameter LLaMA model finetuned to follow instructions. It is trained on the Stanford Alpaca dataset translated into Japanese and makes use of the Huggingface LLaMA implementation. For more information, please visit [the project's website](https://github.com/kunishou/Japanese-Alpaca-LoRA).",
151
- ).launch()