Spaces:
Sleeping
Sleeping
import torch | |
from transformers import AutoModel, AutoTokenizer | |
import gradio as gr | |
import soundfile as sf | |
import numpy as np | |
import tempfile | |
# Load model and tokenizer | |
device = "cpu" # Change to "cuda" if you have GPU | |
model = AutoModel.from_pretrained("ai4bharat/vits_rasa_13", trust_remote_code=True).to(device) | |
tokenizer = AutoTokenizer.from_pretrained("ai4bharat/vits_rasa_13", trust_remote_code=True) | |
# Speaker IDs for languages | |
LANG_SPEAKER_MAP = { | |
"mar": 13, # Marathi Male | |
"hin": 13, # Reuse Marathi Male for Hindi | |
"san": 17 # Sanskrit Male | |
} | |
DEFAULT_STYLE_ID = 0 # ALEXA | |
def generate_audio(text, language): | |
if not text.strip(): | |
return "Error: Text cannot be empty." | |
speaker_id = LANG_SPEAKER_MAP.get(language.lower()) | |
if speaker_id is None: | |
return f"Unsupported language: {language}" | |
inputs = tokenizer(text=text, return_tensors="pt").to(device) | |
with torch.no_grad(): | |
outputs = model(inputs['input_ids'], speaker_id=speaker_id, emotion_id=DEFAULT_STYLE_ID) | |
waveform = outputs.waveform.squeeze().cpu().numpy() | |
sample_rate = model.config.sampling_rate | |
# Save temp audio | |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f: | |
sf.write(f.name, waveform, sample_rate) | |
return sample_rate, waveform | |
# Gradio Interface with clean inputs | |
iface = gr.Interface( | |
fn=generate_audio, | |
inputs=[ | |
gr.Textbox(label="Enter Text"), | |
gr.Dropdown(["mar", "hin", "san"], label="Select Language") | |
], | |
outputs=gr.Audio(label="Generated Audio"), | |
title="VITS TTS for Indian Languages (Marathi, Hindi, Sanskrit)", | |
description="Uses ai4bharat/vits_rasa_13. Enter text and select a language." | |
) | |
iface.launch() | |