import gradio as gr import numpy as np import random # import spaces #[uncomment to use ZeroGPU] from diffusers import DiffusionPipeline import torch device = "cuda" if torch.cuda.is_available() else "cpu" model_id_default = "CompVis/stable-diffusion-v1-4" # Replace to the model you would like to use if torch.cuda.is_available(): torch_dtype = torch.float16 else: torch_dtype = torch.float32 MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 # @spaces.GPU #[uncomment to use ZeroGPU] def infer( prompt, negative_prompt, width, height, model_id=model_id_default, seed=42, guidance_scale=7.0, num_inference_steps=20, progress=gr.Progress(track_tqdm=True), ): generator = torch.Generator().manual_seed(seed) pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype) pipe = pipe.to(device) image = pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, ).images[0] return image css = """ #col-container { margin: 0 auto; max-width: 640px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(" # Text-to-Image demo") with gr.Row(): model_id = gr.Textbox( label="Model ID", max_lines=1, placeholder="Enter model id", value=model_id_default, ) prompt = gr.Textbox( label="Prompt", max_lines=1, placeholder="Enter your prompt", ) negative_prompt = gr.Textbox( label="Negative prompt", max_lines=1, placeholder="Enter your negative prompt", ) with gr.Row(): seed = gr.Number( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=7.0, # Replace with defaults that work for your model ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=20, # Replace with defaults that work for your model ) with gr.Accordion("Optional Settings", open=False): with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, # Replace with defaults that work for your model ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, # Replace with defaults that work for your model ) run_button = gr.Button("Run", scale=0, variant="primary") result = gr.Image(label="Result", show_label=False) gr.on( triggers=[run_button.click], fn=infer, inputs=[ prompt, negative_prompt, width, height, model_id, seed, guidance_scale, num_inference_steps, ], outputs=[result], ) if __name__ == "__main__": demo.launch()