ktrndy commited on
Commit
daa1993
·
verified ·
1 Parent(s): 54ecd01

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -29
app.py CHANGED
@@ -49,6 +49,15 @@ def infer(
49
  if model_id is None:
50
  raise ValueError("Please specify the base model name or path")
51
 
 
 
 
 
 
 
 
 
 
52
  if controlnet_checkbox:
53
  if controlnet_mode == "depth_map":
54
  controlnet = ControlNetModel.from_pretrained(
@@ -84,8 +93,10 @@ def infer(
84
  controlnet=controlnet,
85
  torch_dtype=torch_dtype,
86
  safety_checker=None).to(device)
87
- controlnet_image = load_image(controlnet_image).convert('RGB')
88
- print(type(controlnet_image))
 
 
89
  else:
90
  pipe = StableDiffusionPipeline.from_pretrained(model_id,
91
  torch_dtype=torch_dtype,
@@ -95,7 +106,8 @@ def infer(
95
  if ip_adapter_checkbox:
96
  pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter-plus_sd15.bin")
97
  pipe.set_ip_adapter_scale(ip_adapter_scale)
98
- ip_adapter_image = load_image(ip_adapter_image).convert('RGB')
 
99
 
100
  pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir)
101
  pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, text_encoder_sub_dir)
@@ -109,32 +121,7 @@ def infer(
109
 
110
  pipe.to(device)
111
 
112
- if controlnet_checkbox:
113
- image = pipe(
114
- prompt=prompt,
115
- negative_prompt=negative_prompt,
116
- guidance_scale=guidance_scale,
117
- num_inference_steps=num_inference_steps,
118
- width=width,
119
- height=height,
120
- generator=generator,
121
- control_image=controlnet_image,
122
- controlnet_conditioning_scale=controlnet_strength,
123
- ip_adapter_image=ip_adapter_image if ip_adapter_checkbox else None
124
- ).images[0]
125
- else:
126
- image = pipe(
127
- prompt=prompt,
128
- negative_prompt=negative_prompt,
129
- guidance_scale=guidance_scale,
130
- num_inference_steps=num_inference_steps,
131
- width=width,
132
- height=height,
133
- generator=generator,
134
- ip_adapter_image=ip_adapter_image if ip_adapter_checkbox else None
135
- ).images[0]
136
-
137
- return image
138
 
139
  css = """
140
  #col-container {
 
49
  if model_id is None:
50
  raise ValueError("Please specify the base model name or path")
51
 
52
+ params = {'prompt': prompt,
53
+ 'negative_prompt': negative_prompt,
54
+ 'guidance_scale': guidance_scale,
55
+ 'num_inference_steps': num_inference_steps,
56
+ 'width': width,
57
+ 'height': height,
58
+ 'generator': generator
59
+ }
60
+
61
  if controlnet_checkbox:
62
  if controlnet_mode == "depth_map":
63
  controlnet = ControlNetModel.from_pretrained(
 
93
  controlnet=controlnet,
94
  torch_dtype=torch_dtype,
95
  safety_checker=None).to(device)
96
+ params['control_image'] = controlnet_image
97
+ params['controlnet_conditioning_scale'] = controlnet_strength
98
+ # controlnet_image = load_image(controlnet_image).convert('RGB')
99
+ # print(type(controlnet_image))
100
  else:
101
  pipe = StableDiffusionPipeline.from_pretrained(model_id,
102
  torch_dtype=torch_dtype,
 
106
  if ip_adapter_checkbox:
107
  pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter-plus_sd15.bin")
108
  pipe.set_ip_adapter_scale(ip_adapter_scale)
109
+ params['ip_adapter_image'] = ip_adapter_image
110
+ # ip_adapter_image = load_image(ip_adapter_image).convert('RGB')
111
 
112
  pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir)
113
  pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, text_encoder_sub_dir)
 
121
 
122
  pipe.to(device)
123
 
124
+ return pipe(**params).images[0]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
125
 
126
  css = """
127
  #col-container {