Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -49,6 +49,15 @@ def infer(
|
|
49 |
if model_id is None:
|
50 |
raise ValueError("Please specify the base model name or path")
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
if controlnet_checkbox:
|
53 |
if controlnet_mode == "depth_map":
|
54 |
controlnet = ControlNetModel.from_pretrained(
|
@@ -84,8 +93,10 @@ def infer(
|
|
84 |
controlnet=controlnet,
|
85 |
torch_dtype=torch_dtype,
|
86 |
safety_checker=None).to(device)
|
87 |
-
|
88 |
-
|
|
|
|
|
89 |
else:
|
90 |
pipe = StableDiffusionPipeline.from_pretrained(model_id,
|
91 |
torch_dtype=torch_dtype,
|
@@ -95,7 +106,8 @@ def infer(
|
|
95 |
if ip_adapter_checkbox:
|
96 |
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter-plus_sd15.bin")
|
97 |
pipe.set_ip_adapter_scale(ip_adapter_scale)
|
98 |
-
ip_adapter_image =
|
|
|
99 |
|
100 |
pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir)
|
101 |
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, text_encoder_sub_dir)
|
@@ -109,32 +121,7 @@ def infer(
|
|
109 |
|
110 |
pipe.to(device)
|
111 |
|
112 |
-
|
113 |
-
image = pipe(
|
114 |
-
prompt=prompt,
|
115 |
-
negative_prompt=negative_prompt,
|
116 |
-
guidance_scale=guidance_scale,
|
117 |
-
num_inference_steps=num_inference_steps,
|
118 |
-
width=width,
|
119 |
-
height=height,
|
120 |
-
generator=generator,
|
121 |
-
control_image=controlnet_image,
|
122 |
-
controlnet_conditioning_scale=controlnet_strength,
|
123 |
-
ip_adapter_image=ip_adapter_image if ip_adapter_checkbox else None
|
124 |
-
).images[0]
|
125 |
-
else:
|
126 |
-
image = pipe(
|
127 |
-
prompt=prompt,
|
128 |
-
negative_prompt=negative_prompt,
|
129 |
-
guidance_scale=guidance_scale,
|
130 |
-
num_inference_steps=num_inference_steps,
|
131 |
-
width=width,
|
132 |
-
height=height,
|
133 |
-
generator=generator,
|
134 |
-
ip_adapter_image=ip_adapter_image if ip_adapter_checkbox else None
|
135 |
-
).images[0]
|
136 |
-
|
137 |
-
return image
|
138 |
|
139 |
css = """
|
140 |
#col-container {
|
|
|
49 |
if model_id is None:
|
50 |
raise ValueError("Please specify the base model name or path")
|
51 |
|
52 |
+
params = {'prompt': prompt,
|
53 |
+
'negative_prompt': negative_prompt,
|
54 |
+
'guidance_scale': guidance_scale,
|
55 |
+
'num_inference_steps': num_inference_steps,
|
56 |
+
'width': width,
|
57 |
+
'height': height,
|
58 |
+
'generator': generator
|
59 |
+
}
|
60 |
+
|
61 |
if controlnet_checkbox:
|
62 |
if controlnet_mode == "depth_map":
|
63 |
controlnet = ControlNetModel.from_pretrained(
|
|
|
93 |
controlnet=controlnet,
|
94 |
torch_dtype=torch_dtype,
|
95 |
safety_checker=None).to(device)
|
96 |
+
params['control_image'] = controlnet_image
|
97 |
+
params['controlnet_conditioning_scale'] = controlnet_strength
|
98 |
+
# controlnet_image = load_image(controlnet_image).convert('RGB')
|
99 |
+
# print(type(controlnet_image))
|
100 |
else:
|
101 |
pipe = StableDiffusionPipeline.from_pretrained(model_id,
|
102 |
torch_dtype=torch_dtype,
|
|
|
106 |
if ip_adapter_checkbox:
|
107 |
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter-plus_sd15.bin")
|
108 |
pipe.set_ip_adapter_scale(ip_adapter_scale)
|
109 |
+
params['ip_adapter_image'] = ip_adapter_image
|
110 |
+
# ip_adapter_image = load_image(ip_adapter_image).convert('RGB')
|
111 |
|
112 |
pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir)
|
113 |
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, text_encoder_sub_dir)
|
|
|
121 |
|
122 |
pipe.to(device)
|
123 |
|
124 |
+
return pipe(**params).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
css = """
|
127 |
#col-container {
|