Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -24,8 +24,7 @@ def get_lora_sd_pipeline(
|
|
24 |
base_model_name_or_path=model_id_default,
|
25 |
dtype=torch_dtype,
|
26 |
device=device,
|
27 |
-
adapter_name="default"
|
28 |
-
lora_scale=0.5
|
29 |
):
|
30 |
unet_sub_dir = os.path.join(ckpt_dir, "unet")
|
31 |
text_encoder_sub_dir = os.path.join(ckpt_dir, "text_encoder")
|
@@ -39,7 +38,6 @@ def get_lora_sd_pipeline(
|
|
39 |
pipe = StableDiffusionPipeline.from_pretrained(base_model_name_or_path, torch_dtype=dtype).to(device)
|
40 |
pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name)
|
41 |
pipe.unet.set_adapter(adapter_name)
|
42 |
-
pipe.fuse_lora(lora_scale=lora_scale)
|
43 |
|
44 |
if os.path.exists(text_encoder_sub_dir):
|
45 |
pipe.text_encoder = PeftModel.from_pretrained(
|
@@ -73,7 +71,9 @@ def encode_prompt(prompt, tokenizer, text_encoder):
|
|
73 |
if len(part_of_text_inputs) < tokenizer.model_max_length:
|
74 |
part_of_text_inputs = torch.cat([part_of_text_inputs, torch.tensor([tokenizer.pad_token_id] * (tokenizer.model_max_length - len(part_of_text_inputs)))])
|
75 |
embeds.append(text_encoder(part_of_text_inputs.to(text_encoder.device).unsqueeze(0))[0])
|
76 |
-
start += int((8/
|
|
|
|
|
77 |
prompt_embeds = torch.mean(torch.stack(embeds, dim=0), dim=0)
|
78 |
return prompt_embeds
|
79 |
|
@@ -93,11 +93,11 @@ def infer(
|
|
93 |
):
|
94 |
generator = torch.Generator(device).manual_seed(seed)
|
95 |
pipe = get_lora_sd_pipeline(base_model_name_or_path=model_id,
|
96 |
-
adapter_name="sticker_of_funny_cat_Pusheen"
|
97 |
-
lora_scale=lora_scale)
|
98 |
pipe = pipe.to(device)
|
99 |
prompt_embeds = encode_prompt(prompt, pipe.tokenizer, pipe.text_encoder)
|
100 |
negative_prompt_embeds = encode_prompt(negative_prompt, pipe.tokenizer, pipe.text_encoder)
|
|
|
101 |
|
102 |
image = pipe(
|
103 |
prompt_embeds=prompt_embeds,
|
|
|
24 |
base_model_name_or_path=model_id_default,
|
25 |
dtype=torch_dtype,
|
26 |
device=device,
|
27 |
+
adapter_name="default"
|
|
|
28 |
):
|
29 |
unet_sub_dir = os.path.join(ckpt_dir, "unet")
|
30 |
text_encoder_sub_dir = os.path.join(ckpt_dir, "text_encoder")
|
|
|
38 |
pipe = StableDiffusionPipeline.from_pretrained(base_model_name_or_path, torch_dtype=dtype).to(device)
|
39 |
pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name)
|
40 |
pipe.unet.set_adapter(adapter_name)
|
|
|
41 |
|
42 |
if os.path.exists(text_encoder_sub_dir):
|
43 |
pipe.text_encoder = PeftModel.from_pretrained(
|
|
|
71 |
if len(part_of_text_inputs) < tokenizer.model_max_length:
|
72 |
part_of_text_inputs = torch.cat([part_of_text_inputs, torch.tensor([tokenizer.pad_token_id] * (tokenizer.model_max_length - len(part_of_text_inputs)))])
|
73 |
embeds.append(text_encoder(part_of_text_inputs.to(text_encoder.device).unsqueeze(0))[0])
|
74 |
+
start += int((8/
|
75 |
+
|
76 |
+
11)*tokenizer.model_max_length)
|
77 |
prompt_embeds = torch.mean(torch.stack(embeds, dim=0), dim=0)
|
78 |
return prompt_embeds
|
79 |
|
|
|
93 |
):
|
94 |
generator = torch.Generator(device).manual_seed(seed)
|
95 |
pipe = get_lora_sd_pipeline(base_model_name_or_path=model_id,
|
96 |
+
adapter_name="sticker_of_funny_cat_Pusheen")
|
|
|
97 |
pipe = pipe.to(device)
|
98 |
prompt_embeds = encode_prompt(prompt, pipe.tokenizer, pipe.text_encoder)
|
99 |
negative_prompt_embeds = encode_prompt(negative_prompt, pipe.tokenizer, pipe.text_encoder)
|
100 |
+
pipe.fuse_lora(lora_scale=lora_scale)
|
101 |
|
102 |
image = pipe(
|
103 |
prompt_embeds=prompt_embeds,
|