ktrndy commited on
Commit
af954e6
·
verified ·
1 Parent(s): 69b3cbf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -5
app.py CHANGED
@@ -23,8 +23,7 @@ def get_lora_sd_pipeline(
23
  ckpt_dir='./model_output',
24
  base_model_name_or_path=model_id_default,
25
  dtype=torch_dtype,
26
- device=device,
27
- adapter_name="pusheen"
28
  ):
29
  unet_sub_dir = os.path.join(ckpt_dir, "unet")
30
  text_encoder_sub_dir = os.path.join(ckpt_dir, "text_encoder")
@@ -36,11 +35,11 @@ def get_lora_sd_pipeline(
36
  raise ValueError("Please specify the base model name or path")
37
 
38
  pipe = StableDiffusionPipeline.from_pretrained(base_model_name_or_path, torch_dtype=dtype).to(device)
39
- pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name)
40
 
41
  if os.path.exists(text_encoder_sub_dir):
42
  pipe.text_encoder = PeftModel.from_pretrained(
43
- pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name
44
  )
45
 
46
  if dtype in (torch.float16, torch.bfloat16):
@@ -93,7 +92,7 @@ def infer(
93
  generator = torch.Generator(device).manual_seed(seed)
94
  pipe = get_lora_sd_pipeline(base_model_name_or_path=model_id)
95
  pipe = pipe.to(device)
96
- pipe.fuse_lora(lora_scale=lora_scale)
97
  pipe.safety_checker = None
98
  # prompt_embeds = encode_prompt(prompt, pipe.tokenizer, pipe.text_encoder)
99
  # negative_prompt_embeds = encode_prompt(negative_prompt, pipe.tokenizer, pipe.text_encoder)
 
23
  ckpt_dir='./model_output',
24
  base_model_name_or_path=model_id_default,
25
  dtype=torch_dtype,
26
+ device=device
 
27
  ):
28
  unet_sub_dir = os.path.join(ckpt_dir, "unet")
29
  text_encoder_sub_dir = os.path.join(ckpt_dir, "text_encoder")
 
35
  raise ValueError("Please specify the base model name or path")
36
 
37
  pipe = StableDiffusionPipeline.from_pretrained(base_model_name_or_path, torch_dtype=dtype).to(device)
38
+ pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir)
39
 
40
  if os.path.exists(text_encoder_sub_dir):
41
  pipe.text_encoder = PeftModel.from_pretrained(
42
+ pipe.text_encoder, text_encoder_sub_dir
43
  )
44
 
45
  if dtype in (torch.float16, torch.bfloat16):
 
92
  generator = torch.Generator(device).manual_seed(seed)
93
  pipe = get_lora_sd_pipeline(base_model_name_or_path=model_id)
94
  pipe = pipe.to(device)
95
+ # pipe.fuse_lora(lora_scale=lora_scale)
96
  pipe.safety_checker = None
97
  # prompt_embeds = encode_prompt(prompt, pipe.tokenizer, pipe.text_encoder)
98
  # negative_prompt_embeds = encode_prompt(negative_prompt, pipe.tokenizer, pipe.text_encoder)