Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,9 +3,10 @@ import numpy as np
|
|
3 |
import random
|
4 |
import os
|
5 |
import torch
|
6 |
-
from diffusers import StableDiffusionPipeline
|
7 |
from peft import PeftModel, LoraConfig
|
8 |
|
|
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
model_id_default = "stable-diffusion-v1-5/stable-diffusion-v1-5"
|
11 |
|
@@ -29,7 +30,14 @@ def infer(
|
|
29 |
guidance_scale=7.0,
|
30 |
lora_scale=1.0,
|
31 |
num_inference_steps=20,
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
):
|
34 |
generator = torch.Generator(device).manual_seed(seed)
|
35 |
|
@@ -40,9 +48,52 @@ def infer(
|
|
40 |
if model_id is None:
|
41 |
raise ValueError("Please specify the base model name or path")
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir)
|
47 |
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, text_encoder_sub_dir)
|
48 |
|
@@ -54,16 +105,31 @@ def infer(
|
|
54 |
pipe.text_encoder.half()
|
55 |
|
56 |
pipe.to(device)
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
return image
|
69 |
|
@@ -138,25 +204,24 @@ with gr.Blocks(css=css, fill_height=True) as demo:
|
|
138 |
label="ControlNet",
|
139 |
)
|
140 |
with gr.Column(visible=False) as controlnet_params:
|
141 |
-
|
142 |
label="ControlNet conditioning scale",
|
143 |
minimum=0.0,
|
144 |
maximum=1.0,
|
145 |
step=0.01,
|
146 |
value=1.0,
|
147 |
)
|
148 |
-
|
149 |
label="ControlNet mode",
|
150 |
choices=["edge_detection",
|
|
|
151 |
"pose_estimation",
|
152 |
-
"
|
153 |
-
"
|
154 |
-
"scribbles",
|
155 |
-
"human pose"],
|
156 |
value="edge_detection",
|
157 |
max_choices=1
|
158 |
)
|
159 |
-
|
160 |
label="ControlNet condition image",
|
161 |
type="pil",
|
162 |
format="png"
|
@@ -168,27 +233,26 @@ with gr.Blocks(css=css, fill_height=True) as demo:
|
|
168 |
)
|
169 |
|
170 |
with gr.Row():
|
171 |
-
|
172 |
label="IPAdapter",
|
173 |
)
|
174 |
-
with gr.Column(visible=False) as
|
175 |
-
|
176 |
-
label="
|
177 |
minimum=0.0,
|
178 |
maximum=1.0,
|
179 |
step=0.01,
|
180 |
value=1.0,
|
181 |
)
|
182 |
-
|
183 |
-
label="
|
184 |
-
|
185 |
-
|
186 |
-
max_choices=1
|
187 |
)
|
188 |
-
|
189 |
fn=lambda x: gr.Row.update(visible=x),
|
190 |
-
inputs=
|
191 |
-
outputs=
|
192 |
)
|
193 |
|
194 |
with gr.Accordion("Optional Settings", open=False):
|
@@ -225,8 +289,14 @@ with gr.Blocks(css=css, fill_height=True) as demo:
|
|
225 |
seed,
|
226 |
guidance_scale,
|
227 |
lora_scale,
|
228 |
-
num_inference_steps
|
229 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
],
|
231 |
outputs=[result],
|
232 |
)
|
|
|
3 |
import random
|
4 |
import os
|
5 |
import torch
|
6 |
+
from diffusers import StableDiffusionPipeline, ControlNetModel
|
7 |
from peft import PeftModel, LoraConfig
|
8 |
|
9 |
+
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
model_id_default = "stable-diffusion-v1-5/stable-diffusion-v1-5"
|
12 |
|
|
|
30 |
guidance_scale=7.0,
|
31 |
lora_scale=1.0,
|
32 |
num_inference_steps=20,
|
33 |
+
controlnet_checkbox=False,
|
34 |
+
controlnet_strength=0.0,
|
35 |
+
controlnet_mode="edge_detection",
|
36 |
+
controlnet_image=None,
|
37 |
+
ip_adapter_checkbox=False,
|
38 |
+
ip_adapter_scale=0.0,
|
39 |
+
ip_adapter_image=None,
|
40 |
+
progress=gr.Progress(track_tqdm=True),
|
41 |
):
|
42 |
generator = torch.Generator(device).manual_seed(seed)
|
43 |
|
|
|
48 |
if model_id is None:
|
49 |
raise ValueError("Please specify the base model name or path")
|
50 |
|
51 |
+
if controlnet_checkbox:
|
52 |
+
if controlnet_mode == "depth_map":
|
53 |
+
controlnet = ControlNetModel.from_pretrained(
|
54 |
+
"lllyasviel/sd-controlnet-depth",
|
55 |
+
cache_dir="./models_cache",
|
56 |
+
torch_dtype=torch_dtype
|
57 |
+
)
|
58 |
+
elif controlnet_mode == "pose_estimation":
|
59 |
+
controlnet = ControlNetModel.from_pretrained(
|
60 |
+
"lllyasviel/sd-controlnet-openpose",
|
61 |
+
cache_dir="./models_cache",
|
62 |
+
torch_dtype=torch_dtype
|
63 |
+
)
|
64 |
+
elif controlnet_mode == "normal_map":
|
65 |
+
controlnet = ControlNetModel.from_pretrained(
|
66 |
+
"lllyasviel/sd-controlnet-normal",
|
67 |
+
cache_dir="./models_cache",
|
68 |
+
torch_dtype=torch_dtype
|
69 |
+
)
|
70 |
+
elif controlnet_mode == "scribbles":
|
71 |
+
controlnet = ControlNetModel.from_pretrained(
|
72 |
+
"lllyasviel/sd-controlnet-scribble",
|
73 |
+
cache_dir="./models_cache",
|
74 |
+
torch_dtype=torch_dtype
|
75 |
+
)
|
76 |
+
else:
|
77 |
+
controlnet_mode == "edge_detection":
|
78 |
+
controlnet = ControlNetModel.from_pretrained(
|
79 |
+
"lllyasviel/sd-controlnet-canny",
|
80 |
+
cache_dir="./models_cache",
|
81 |
+
torch_dtype=torch_dtype
|
82 |
+
)
|
83 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id,
|
84 |
+
controlnet=controlnet,
|
85 |
+
torch_dtype=torch_dtype,
|
86 |
+
safety_checker=None).to(device)
|
87 |
+
else:
|
88 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id,
|
89 |
+
torch_dtype=torch_dtype,
|
90 |
+
safety_checker=None).to(device)
|
91 |
+
|
92 |
+
|
93 |
+
if ip_adapter_checkbox:
|
94 |
+
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter-plus_sd15.bin")
|
95 |
+
pipe.set_ip_adapter_scale(ip_adapter_scale)
|
96 |
+
|
97 |
pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir)
|
98 |
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, text_encoder_sub_dir)
|
99 |
|
|
|
105 |
pipe.text_encoder.half()
|
106 |
|
107 |
pipe.to(device)
|
108 |
+
|
109 |
+
if controlnet_checkbox:
|
110 |
+
image = pipe(
|
111 |
+
prompt=prompt,
|
112 |
+
negative_prompt=negative_prompt,
|
113 |
+
guidance_scale=guidance_scale,
|
114 |
+
num_inference_steps=num_inference_steps,
|
115 |
+
width=width,
|
116 |
+
height=height,
|
117 |
+
generator=generator,
|
118 |
+
image=controlnet_image,
|
119 |
+
controlnet_conditioning_scale=controlnet_strength,
|
120 |
+
ip_adapter_image=ip_adapter_image if ip_adapter_checkbox else None
|
121 |
+
).images[0]
|
122 |
+
else:
|
123 |
+
image = pipe(
|
124 |
+
prompt=prompt,
|
125 |
+
negative_prompt=negative_prompt,
|
126 |
+
guidance_scale=guidance_scale,
|
127 |
+
num_inference_steps=num_inference_steps,
|
128 |
+
width=width,
|
129 |
+
height=height,
|
130 |
+
generator=generator,
|
131 |
+
ip_adapter_image=ip_adapter_image if ip_adapter_checkbox else None
|
132 |
+
).images[0]
|
133 |
|
134 |
return image
|
135 |
|
|
|
204 |
label="ControlNet",
|
205 |
)
|
206 |
with gr.Column(visible=False) as controlnet_params:
|
207 |
+
controlnet_strength = gr.Slider(
|
208 |
label="ControlNet conditioning scale",
|
209 |
minimum=0.0,
|
210 |
maximum=1.0,
|
211 |
step=0.01,
|
212 |
value=1.0,
|
213 |
)
|
214 |
+
controlnet_mode = gr.Dropdown(
|
215 |
label="ControlNet mode",
|
216 |
choices=["edge_detection",
|
217 |
+
"depth_map",
|
218 |
"pose_estimation",
|
219 |
+
"normal_map",
|
220 |
+
"scribbles"],
|
|
|
|
|
221 |
value="edge_detection",
|
222 |
max_choices=1
|
223 |
)
|
224 |
+
controlnet_image = gr.Image(
|
225 |
label="ControlNet condition image",
|
226 |
type="pil",
|
227 |
format="png"
|
|
|
233 |
)
|
234 |
|
235 |
with gr.Row():
|
236 |
+
ip_adapter_checkbox = gr.Checkbox(
|
237 |
label="IPAdapter",
|
238 |
)
|
239 |
+
with gr.Column(visible=False) as ip_adapter_params:
|
240 |
+
ip_adapter_scale = gr.Slider(
|
241 |
+
label="IPAdapter scale",
|
242 |
minimum=0.0,
|
243 |
maximum=1.0,
|
244 |
step=0.01,
|
245 |
value=1.0,
|
246 |
)
|
247 |
+
ip_adapter_image = gr.Image(
|
248 |
+
label="IPAdapter condition image",
|
249 |
+
type="pil",
|
250 |
+
format="png"
|
|
|
251 |
)
|
252 |
+
ip_adapter_checkbox.change(
|
253 |
fn=lambda x: gr.Row.update(visible=x),
|
254 |
+
inputs=ip_adapter_checkbox,
|
255 |
+
outputs=ip_adapter_params
|
256 |
)
|
257 |
|
258 |
with gr.Accordion("Optional Settings", open=False):
|
|
|
289 |
seed,
|
290 |
guidance_scale,
|
291 |
lora_scale,
|
292 |
+
num_inference_steps,
|
293 |
+
controlnet_checkbox,
|
294 |
+
controlnet_strength,
|
295 |
+
controlnet_mode,
|
296 |
+
controlnet_image,
|
297 |
+
ip_adapter_checkbox,
|
298 |
+
ip_adapter_scale,
|
299 |
+
ip_adapter_image
|
300 |
],
|
301 |
outputs=[result],
|
302 |
)
|