Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -24,7 +24,8 @@ def get_lora_sd_pipeline(
|
|
24 |
base_model_name_or_path=model_id_default,
|
25 |
dtype=torch_dtype,
|
26 |
device=device,
|
27 |
-
adapter_name="default"
|
|
|
28 |
):
|
29 |
unet_sub_dir = os.path.join(ckpt_dir, "unet")
|
30 |
text_encoder_sub_dir = os.path.join(ckpt_dir, "text_encoder")
|
@@ -38,6 +39,7 @@ def get_lora_sd_pipeline(
|
|
38 |
pipe = StableDiffusionPipeline.from_pretrained(base_model_name_or_path, torch_dtype=dtype).to(device)
|
39 |
pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name)
|
40 |
pipe.unet.set_adapter(adapter_name)
|
|
|
41 |
|
42 |
if os.path.exists(text_encoder_sub_dir):
|
43 |
pipe.text_encoder = PeftModel.from_pretrained(
|
@@ -52,30 +54,30 @@ def get_lora_sd_pipeline(
|
|
52 |
return pipe
|
53 |
|
54 |
|
55 |
-
def encode_prompt(prompt, tokenizer, text_encoder):
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
|
80 |
|
81 |
# @spaces.GPU #[uncomment to use ZeroGPU]
|
@@ -95,13 +97,12 @@ def infer(
|
|
95 |
pipe = get_lora_sd_pipeline(base_model_name_or_path=model_id,
|
96 |
adapter_name="sticker_of_funny_cat_Pusheen")
|
97 |
pipe = pipe.to(device)
|
98 |
-
prompt_embeds = encode_prompt(prompt, pipe.tokenizer, pipe.text_encoder)
|
99 |
-
negative_prompt_embeds = encode_prompt(negative_prompt, pipe.tokenizer, pipe.text_encoder)
|
100 |
-
# pipe.fuse_lora(lora_scale=lora_scale)
|
101 |
|
102 |
image = pipe(
|
103 |
-
|
104 |
-
|
105 |
guidance_scale=guidance_scale,
|
106 |
num_inference_steps=num_inference_steps,
|
107 |
width=width,
|
|
|
24 |
base_model_name_or_path=model_id_default,
|
25 |
dtype=torch_dtype,
|
26 |
device=device,
|
27 |
+
adapter_name="default",
|
28 |
+
lora_scale=1.0
|
29 |
):
|
30 |
unet_sub_dir = os.path.join(ckpt_dir, "unet")
|
31 |
text_encoder_sub_dir = os.path.join(ckpt_dir, "text_encoder")
|
|
|
39 |
pipe = StableDiffusionPipeline.from_pretrained(base_model_name_or_path, torch_dtype=dtype).to(device)
|
40 |
pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name)
|
41 |
pipe.unet.set_adapter(adapter_name)
|
42 |
+
pipe.fuse_lora(lora_scale=lora_scale)
|
43 |
|
44 |
if os.path.exists(text_encoder_sub_dir):
|
45 |
pipe.text_encoder = PeftModel.from_pretrained(
|
|
|
54 |
return pipe
|
55 |
|
56 |
|
57 |
+
# def encode_prompt(prompt, tokenizer, text_encoder):
|
58 |
+
# text_inputs = tokenizer(
|
59 |
+
# prompt,
|
60 |
+
# padding="max_length",
|
61 |
+
# max_length=tokenizer.model_max_length,
|
62 |
+
# return_tensors="pt",
|
63 |
+
# )
|
64 |
+
# with torch.no_grad():
|
65 |
+
# if len(text_inputs.input_ids[0]) < tokenizer.model_max_length:
|
66 |
+
# prompt_embeds = text_encoder(text_inputs.input_ids.to(text_encoder.device))[0]
|
67 |
+
# else:
|
68 |
+
# embeds = []
|
69 |
+
# start = 0
|
70 |
+
# while start < tokenizer.model_max_length:
|
71 |
+
# end = start + tokenizer.model_max_length
|
72 |
+
# part_of_text_inputs = text_inputs.input_ids[0][start:end]
|
73 |
+
# if len(part_of_text_inputs) < tokenizer.model_max_length:
|
74 |
+
# part_of_text_inputs = torch.cat([part_of_text_inputs, torch.tensor([tokenizer.pad_token_id] * (tokenizer.model_max_length - len(part_of_text_inputs)))])
|
75 |
+
# embeds.append(text_encoder(part_of_text_inputs.to(text_encoder.device).unsqueeze(0))[0])
|
76 |
+
# start += int((8/
|
77 |
|
78 |
+
# 11)*tokenizer.model_max_length)
|
79 |
+
# prompt_embeds = torch.mean(torch.stack(embeds, dim=0), dim=0)
|
80 |
+
# return prompt_embeds
|
81 |
|
82 |
|
83 |
# @spaces.GPU #[uncomment to use ZeroGPU]
|
|
|
97 |
pipe = get_lora_sd_pipeline(base_model_name_or_path=model_id,
|
98 |
adapter_name="sticker_of_funny_cat_Pusheen")
|
99 |
pipe = pipe.to(device)
|
100 |
+
# prompt_embeds = encode_prompt(prompt, pipe.tokenizer, pipe.text_encoder)
|
101 |
+
# negative_prompt_embeds = encode_prompt(negative_prompt, pipe.tokenizer, pipe.text_encoder)
|
|
|
102 |
|
103 |
image = pipe(
|
104 |
+
prompt=prompt,
|
105 |
+
negative_prompt=negative_prompt,
|
106 |
guidance_scale=guidance_scale,
|
107 |
num_inference_steps=num_inference_steps,
|
108 |
width=width,
|