Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -39,6 +39,7 @@ def get_lora_sd_pipeline(
|
|
39 |
pipe = StableDiffusionPipeline.from_pretrained(base_model_name_or_path, torch_dtype=dtype).to(device)
|
40 |
pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name)
|
41 |
pipe.unet.set_adapter(adapter_name)
|
|
|
42 |
|
43 |
if os.path.exists(text_encoder_sub_dir):
|
44 |
pipe.text_encoder = PeftModel.from_pretrained(
|
@@ -99,7 +100,6 @@ def infer(
|
|
99 |
pipe = pipe.to(device)
|
100 |
prompt_embeds = encode_prompt(prompt, pipe.tokenizer, pipe.text_encoder)
|
101 |
negative_prompt_embeds = encode_prompt(negative_prompt, pipe.tokenizer, pipe.text_encoder)
|
102 |
-
pipe.fuse_lora(lora_scale=lora_scale)
|
103 |
|
104 |
image = pipe(
|
105 |
prompt_embeds=prompt_embeds,
|
@@ -210,7 +210,9 @@ with gr.Blocks(css=css, fill_height=True) as demo:
|
|
210 |
model_id,
|
211 |
seed,
|
212 |
guidance_scale,
|
213 |
-
num_inference_steps,
|
|
|
|
|
214 |
],
|
215 |
outputs=[result],
|
216 |
)
|
|
|
39 |
pipe = StableDiffusionPipeline.from_pretrained(base_model_name_or_path, torch_dtype=dtype).to(device)
|
40 |
pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name)
|
41 |
pipe.unet.set_adapter(adapter_name)
|
42 |
+
pipe.fuse_lora(lora_scale=lora_scale)
|
43 |
|
44 |
if os.path.exists(text_encoder_sub_dir):
|
45 |
pipe.text_encoder = PeftModel.from_pretrained(
|
|
|
100 |
pipe = pipe.to(device)
|
101 |
prompt_embeds = encode_prompt(prompt, pipe.tokenizer, pipe.text_encoder)
|
102 |
negative_prompt_embeds = encode_prompt(negative_prompt, pipe.tokenizer, pipe.text_encoder)
|
|
|
103 |
|
104 |
image = pipe(
|
105 |
prompt_embeds=prompt_embeds,
|
|
|
210 |
model_id,
|
211 |
seed,
|
212 |
guidance_scale,
|
213 |
+
num_inference_steps,
|
214 |
+
lora_scale
|
215 |
+
|
216 |
],
|
217 |
outputs=[result],
|
218 |
)
|