ktrndy commited on
Commit
077fedb
·
verified ·
1 Parent(s): 033c787

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -11
app.py CHANGED
@@ -26,21 +26,13 @@ def get_lora_sd_pipeline(
26
  device=device
27
  ):
28
  unet_sub_dir = os.path.join(ckpt_dir, "unet")
29
- text_encoder_sub_dir = os.path.join(ckpt_dir, "text_encoder")
30
- if os.path.exists(text_encoder_sub_dir) and base_model_name_or_path is None:
31
- config = LoraConfig.from_pretrained(text_encoder_sub_dir)
32
- base_model_name_or_path = config.base_model_name_or_path
33
-
34
  if base_model_name_or_path is None:
35
  raise ValueError("Please specify the base model name or path")
36
 
37
  pipe = StableDiffusionPipeline.from_pretrained(base_model_name_or_path, torch_dtype=dtype).to(device)
38
- pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir)
39
-
40
- if os.path.exists(text_encoder_sub_dir):
41
- pipe.text_encoder = PeftModel.from_pretrained(
42
- pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name
43
- )
44
 
45
  if dtype in (torch.float16, torch.bfloat16):
46
  pipe.unet.half()
@@ -95,6 +87,11 @@ def infer(
95
  # pipe.fuse_lora(lora_scale=lora_scale)
96
  # prompt_embeds = encode_prompt(prompt, pipe.tokenizer, pipe.text_encoder)
97
  # negative_prompt_embeds = encode_prompt(negative_prompt, pipe.tokenizer, pipe.text_encoder)
 
 
 
 
 
98
 
99
  image = pipe(
100
  prompt=prompt,
 
26
  device=device
27
  ):
28
  unet_sub_dir = os.path.join(ckpt_dir, "unet")
29
+
 
 
 
 
30
  if base_model_name_or_path is None:
31
  raise ValueError("Please specify the base model name or path")
32
 
33
  pipe = StableDiffusionPipeline.from_pretrained(base_model_name_or_path, torch_dtype=dtype).to(device)
34
+ pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, torch_dtype=torch_dtype)
35
+ pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, base_model_name_or_path, subfolder="text_encoder", torch_dtype=torch_dtype)
 
 
 
 
36
 
37
  if dtype in (torch.float16, torch.bfloat16):
38
  pipe.unet.half()
 
87
  # pipe.fuse_lora(lora_scale=lora_scale)
88
  # prompt_embeds = encode_prompt(prompt, pipe.tokenizer, pipe.text_encoder)
89
  # negative_prompt_embeds = encode_prompt(negative_prompt, pipe.tokenizer, pipe.text_encoder)
90
+ if hasattr(pipe.unet, "set_lora_scale"):
91
+ pipe.unet.set_lora_scale(lora_scale)
92
+ else:
93
+ print("Warning: LoRA scale adjustment method not found on UNet.")
94
+
95
 
96
  image = pipe(
97
  prompt=prompt,