Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -26,21 +26,13 @@ def get_lora_sd_pipeline(
|
|
26 |
device=device
|
27 |
):
|
28 |
unet_sub_dir = os.path.join(ckpt_dir, "unet")
|
29 |
-
|
30 |
-
if os.path.exists(text_encoder_sub_dir) and base_model_name_or_path is None:
|
31 |
-
config = LoraConfig.from_pretrained(text_encoder_sub_dir)
|
32 |
-
base_model_name_or_path = config.base_model_name_or_path
|
33 |
-
|
34 |
if base_model_name_or_path is None:
|
35 |
raise ValueError("Please specify the base model name or path")
|
36 |
|
37 |
pipe = StableDiffusionPipeline.from_pretrained(base_model_name_or_path, torch_dtype=dtype).to(device)
|
38 |
-
pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir)
|
39 |
-
|
40 |
-
if os.path.exists(text_encoder_sub_dir):
|
41 |
-
pipe.text_encoder = PeftModel.from_pretrained(
|
42 |
-
pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name
|
43 |
-
)
|
44 |
|
45 |
if dtype in (torch.float16, torch.bfloat16):
|
46 |
pipe.unet.half()
|
@@ -95,6 +87,11 @@ def infer(
|
|
95 |
# pipe.fuse_lora(lora_scale=lora_scale)
|
96 |
# prompt_embeds = encode_prompt(prompt, pipe.tokenizer, pipe.text_encoder)
|
97 |
# negative_prompt_embeds = encode_prompt(negative_prompt, pipe.tokenizer, pipe.text_encoder)
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
image = pipe(
|
100 |
prompt=prompt,
|
|
|
26 |
device=device
|
27 |
):
|
28 |
unet_sub_dir = os.path.join(ckpt_dir, "unet")
|
29 |
+
|
|
|
|
|
|
|
|
|
30 |
if base_model_name_or_path is None:
|
31 |
raise ValueError("Please specify the base model name or path")
|
32 |
|
33 |
pipe = StableDiffusionPipeline.from_pretrained(base_model_name_or_path, torch_dtype=dtype).to(device)
|
34 |
+
pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, torch_dtype=torch_dtype)
|
35 |
+
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, base_model_name_or_path, subfolder="text_encoder", torch_dtype=torch_dtype)
|
|
|
|
|
|
|
|
|
36 |
|
37 |
if dtype in (torch.float16, torch.bfloat16):
|
38 |
pipe.unet.half()
|
|
|
87 |
# pipe.fuse_lora(lora_scale=lora_scale)
|
88 |
# prompt_embeds = encode_prompt(prompt, pipe.tokenizer, pipe.text_encoder)
|
89 |
# negative_prompt_embeds = encode_prompt(negative_prompt, pipe.tokenizer, pipe.text_encoder)
|
90 |
+
if hasattr(pipe.unet, "set_lora_scale"):
|
91 |
+
pipe.unet.set_lora_scale(lora_scale)
|
92 |
+
else:
|
93 |
+
print("Warning: LoRA scale adjustment method not found on UNet.")
|
94 |
+
|
95 |
|
96 |
image = pipe(
|
97 |
prompt=prompt,
|