Spaces:
Running
Running
import gradio as gr | |
import numpy as np | |
import random | |
import os | |
import torch | |
from diffusers import StableDiffusionPipeline | |
from peft import PeftModel, LoraConfig | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model_id_default = "stable-diffusion-v1-5/stable-diffusion-v1-5" | |
if torch.cuda.is_available(): | |
torch_dtype = torch.float16 | |
else: | |
torch_dtype = torch.float32 | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
# @spaces.GPU #[uncomment to use ZeroGPU] | |
def infer( | |
prompt, | |
negative_prompt, | |
width=512, | |
height=512, | |
model_id=model_id_default, | |
seed=42, | |
guidance_scale=7.0, | |
lora_scale=1.0, | |
num_inference_steps=20, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
generator = torch.Generator(device).manual_seed(seed) | |
ckpt_dir='./model_output' | |
unet_sub_dir = os.path.join(ckpt_dir, "unet") | |
text_encoder_sub_dir = os.path.join(ckpt_dir, "text_encoder") | |
if model_id is None: | |
raise ValueError("Please specify the base model name or path") | |
pipe = StableDiffusionPipeline.from_pretrained(model_id, | |
torch_dtype=torch_dtype, | |
safety_checker=None).to(device) | |
pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir) | |
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, text_encoder_sub_dir) | |
pipe.unet.load_state_dict({k: lora_scale*v for k, v in pipe.unet.state_dict().items()}) | |
pipe.text_encoder.load_state_dict({k: lora_scale*v for k, v in pipe.text_encoder.state_dict().items()}) | |
if torch_dtype in (torch.float16, torch.bfloat16): | |
pipe.unet.half() | |
pipe.text_encoder.half() | |
pipe.to(device) | |
image = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator, | |
).images[0] | |
return image | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 640px; | |
} | |
""" | |
def controlnet_params(show_extra): | |
return gr.update(visible=show_extra) | |
with gr.Blocks(css=css, fill_height=True) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(" # Text-to-Image demo") | |
with gr.Row(): | |
model_id = gr.Textbox( | |
label="Model ID", | |
max_lines=1, | |
placeholder="Enter model id", | |
value=model_id_default, | |
) | |
prompt = gr.Textbox( | |
label="Prompt", | |
max_lines=1, | |
placeholder="Enter your prompt", | |
) | |
negative_prompt = gr.Textbox( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter your negative prompt", | |
) | |
with gr.Row(): | |
seed = gr.Number( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=42, | |
) | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=30.0, | |
step=0.1, | |
value=7.0, # Replace with defaults that work for your model | |
) | |
with gr.Row(): | |
lora_scale = gr.Slider( | |
label="LoRA scale", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.01, | |
value=1.0, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=20, # Replace with defaults that work for your model | |
) | |
with gr.Row(): | |
controlnet_checkbox = gr.Checkbox( | |
label="ControlNet", | |
) | |
with gr.Column(visible=False) as controlnet_params: | |
control_strength = gr.Slider( | |
label="ControlNet conditioning scale", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.01, | |
value=1.0, | |
) | |
control_mode = gr.Dropdown( | |
label="ControlNet mode", | |
choices=["edge_detection", | |
"pose_estimation", | |
"straight_line_detection", | |
"hed_boundary", | |
"scribbles", | |
"human pose"], | |
value="edge_detection", | |
max_choices=1 | |
) | |
condition_image = gr.Image( | |
label="ControlNet condition image", | |
type="pil", | |
format="png" | |
) | |
controlnet_checkbox.change( | |
fn=lambda x: gr.Row.update(visible=x), | |
inputs=controlnet_checkbox, | |
outputs=controlnet_params | |
) | |
with gr.Row(): | |
controlnet_checkbox = gr.Checkbox( | |
label="IPAdapter", | |
) | |
with gr.Column(visible=False) as controlnet_params: | |
control_strength = gr.Slider( | |
label="ControlNet conditioning scale", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.01, | |
value=1.0, | |
) | |
control_mode = gr.Dropdown( | |
label="ControlNet mode", | |
choices=["edge_detection", "other"], | |
value="edge_detection", | |
max_choices=1 | |
) | |
controlnet_checkbox.change( | |
fn=lambda x: gr.Row.update(visible=x), | |
inputs=controlnet_checkbox, | |
outputs=controlnet_params | |
) | |
with gr.Accordion("Optional Settings", open=False): | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=512, # Replace with defaults that work for your model | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=512, # Replace with defaults that work for your model | |
) | |
run_button = gr.Button("Run", scale=0, variant="primary") | |
result = gr.Image(label="Result", show_label=False) | |
gr.on( | |
triggers=[run_button.click], | |
fn=infer, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
width, | |
height, | |
model_id, | |
seed, | |
guidance_scale, | |
lora_scale, | |
num_inference_steps | |
], | |
outputs=[result], | |
) | |
if __name__ == "__main__": | |
demo.launch() |