Spaces:
Running
Running
File size: 6,827 Bytes
7cffda1 909eb62 7cffda1 909eb62 7cffda1 d9bbac9 7cffda1 1168b4e 7cffda1 909eb62 7cffda1 909eb62 372ff8e 2be0274 909eb62 2be0274 7cffda1 2be0274 909eb62 2be0274 909eb62 2be0274 7cffda1 909eb62 7cffda1 2be0274 7cffda1 35d77df 1168b4e 7cffda1 a4d79f2 7cffda1 a4d79f2 7cffda1 d6d22de a4d79f2 909eb62 a4d79f2 1168b4e a4d79f2 d6d22de 7cffda1 a4d79f2 7cffda1 a4d79f2 7cffda1 a4d79f2 e961ca6 7cffda1 289a338 7cffda1 372ff8e 7cffda1 372ff8e 7cffda1 1168b4e 7cffda1 909eb62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
import gradio as gr
import numpy as np
import random
import os
import torch
from diffusers import StableDiffusionPipeline
from peft import PeftModel, LoraConfig
from diffusers import DiffusionPipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
model_id_default = "stable-diffusion-v1-5/stable-diffusion-v1-5" # Replace to the model you would like to use
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def get_lora_sd_pipeline(
ckpt_dir='./output',
base_model_name_or_path=model_id_default,
dtype=torch_dtype,
device=device,
adapter_name="default"
):
unet_sub_dir = os.path.join(ckpt_dir, "unet")
text_encoder_sub_dir = os.path.join(ckpt_dir, "text_encoder")
if os.path.exists(text_encoder_sub_dir) and base_model_name_or_path is None:
config = LoraConfig.from_pretrained(text_encoder_sub_dir)
base_model_name_or_path = config.base_model_name_or_path
if base_model_name_or_path is None:
raise ValueError("Please specify the base model name or path")
pipe = StableDiffusionPipeline.from_pretrained(base_model_name_or_path, torch_dtype=dtype).to(device)
pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name)
if os.path.exists(text_encoder_sub_dir):
pipe.text_encoder = PeftModel.from_pretrained(
pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name
)
if dtype in (torch.float16, torch.bfloat16):
pipe.unet.half()
pipe.text_encoder.half()
pipe.to(device)
return pipe
def encode_prompt(prompt, tokenizer, text_encoder):
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=tokenizer.model_max_length,
return_tensors="pt",
)
with torch.no_grad():
if len(text_inputs.input_ids[0]) < tokenizer.model_max_length:
prompt_embeds = text_encoder(text_inputs.input_ids.to(text_encoder.device))[0]
else:
embeds = []
start = 0
while start < tokenizer.model_max_length:
end = start + tokenizer.model_max_length
part_of_text_inputs = text_inputs.input_ids[0][start:end]
if len(part_of_text_inputs) < tokenizer.model_max_length:
part_of_text_inputs = torch.cat([part_of_text_inputs, torch.tensor([tokenizer.pad_token_id] * (tokenizer.model_max_length - len(part_of_text_inputs)))])
embeds.append(text_encoder(part_of_text_inputs.to(text_encoder.device).unsqueeze(0))[0])
start += int((8/11)*tokenizer.model_max_length)
prompt_embeds = torch.mean(torch.stack(embeds, dim=0), dim=0)
return prompt_embeds
pipe = get_lora_sd_pipeline(adapter_name="sticker_of_funny_cat_Pusheen")
# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
prompt,
negative_prompt,
width=512,
height=512,
model_id=model_id_default,
seed=42,
guidance_scale=7.0,
lora_scale=0.5,
num_inference_steps=20,
progress=gr.Progress(track_tqdm=True),
):
generator = torch.Generator(device).manual_seed(seed)
pipe = get_lora_sd_pipeline(base_model_name_or_path=model_id,
adapter_name="sticker_of_funny_cat_Pusheen")
pipe = pipe.to(device)
prompt_embeds = encode_prompt(prompt, pipe.tokenizer, pipe.text_encoder)
negative_prompt_embeds = encode_prompt(negative_prompt, pipe.tokenizer, pipe.text_encoder)
pipe.fuse_lora(lora_scale=lora_scale)
image = pipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
return image
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css, fill_height=True) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # Text-to-Image demo")
with gr.Row():
model_id = gr.Textbox(
label="Model ID",
max_lines=1,
placeholder="Enter model id",
value=model_id_default,
)
prompt = gr.Textbox(
label="Prompt",
max_lines=1,
placeholder="Enter your prompt",
)
negative_prompt = gr.Textbox(
label="Negative prompt",
max_lines=1,
placeholder="Enter your negative prompt",
)
with gr.Row():
seed = gr.Number(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=7.0, # Replace with defaults that work for your model
)
lora_scale = gr.Slider(
label="LoRA scale",
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=20, # Replace with defaults that work for your model
)
with gr.Accordion("Optional Settings", open=False):
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024, # Replace with defaults that work for your model
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024, # Replace with defaults that work for your model
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
gr.on(
triggers=[run_button.click],
fn=infer,
inputs=[
prompt,
negative_prompt,
width,
height,
model_id,
seed,
guidance_scale,
num_inference_steps,
],
outputs=[result],
)
if __name__ == "__main__":
demo.launch() |