File size: 5,935 Bytes
50ef0b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac926d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50ef0b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import gradio as gr
import numpy as np
import random
import os
import torch
from diffusers import StableDiffusionPipeline
from peft import PeftModel, LoraConfig

device = "cuda" if torch.cuda.is_available() else "cpu"
model_id_default = "stable-diffusion-v1-5/stable-diffusion-v1-5"

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024


# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
    prompt,
    negative_prompt,
    width=512,
    height=512,
    model_id=model_id_default,
    seed=42,
    guidance_scale=7.0,
    lora_scale=1.0,
    num_inference_steps=20,
    progress=gr.Progress(track_tqdm=True),
):  
    generator = torch.Generator(device).manual_seed(seed)

    ckpt_dir='./model_output'
    unet_sub_dir = os.path.join(ckpt_dir, "unet")
    text_encoder_sub_dir = os.path.join(ckpt_dir, "text_encoder")

    if model_id is None:
        raise ValueError("Please specify the base model name or path")

    pipe = StableDiffusionPipeline.from_pretrained(model_id, 
                                                   torch_dtype=torch_dtype, 
                                                   safety_checker=None).to(device)
    pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir)
    pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, text_encoder_sub_dir)

    pipe.unet.load_state_dict({k: lora_scale*v for k, v in pipe.unet.state_dict().items()})
    pipe.text_encoder.load_state_dict({k: lora_scale*v for k, v in pipe.text_encoder.state_dict().items()})
    
    if torch_dtype in (torch.float16, torch.bfloat16):
        pipe.unet.half()
        pipe.text_encoder.half()

    pipe.to(device)
    
    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
    ).images[0]
    
    return image

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

def controlnet_params(show_extra):
    return gr.update(visible=show_extra)
    
with gr.Blocks(css=css, fill_height=True) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # Text-to-Image demo")

        with gr.Row():
            model_id = gr.Textbox(
                label="Model ID",
                max_lines=1,
                placeholder="Enter model id",
                value=model_id_default,
            )

        prompt = gr.Textbox(
            label="Prompt",
            max_lines=1,
            placeholder="Enter your prompt",
        )
        
        negative_prompt = gr.Textbox(
            label="Negative prompt",
            max_lines=1,
            placeholder="Enter your negative prompt",
        )
        
        with gr.Row():
            seed = gr.Number(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=42,
            )
            
            guidance_scale = gr.Slider(
                label="Guidance scale",
                minimum=0.0,
                maximum=30.0,
                step=0.1,
                value=7.0,  # Replace with defaults that work for your model
            )
        with gr.Row():
            lora_scale = gr.Slider(
                label="LoRA scale",
                minimum=0.0,
                maximum=1.0,
                step=0.01,
                value=1.0,
            )

            num_inference_steps = gr.Slider(
                label="Number of inference steps",
                minimum=1,
                maximum=100,
                step=1,
                value=20,  # Replace with defaults that work for your model
            )
        with gr.Row():
            controlnet_checkbox = gr.Checkbox(
                label="ControlNet",
            )
            # with gr.Group(visible=False) as controlnet_params:
            #     control_strength = gr.Slider(
            #         label="ControlNet conditioning scale",
            #         minimum=0.0,
            #         maximum=1.0,
            #         step=0.01,
            #         value=1.0,  
            #     )
            #     control_mode = gr.Dropdown(
            #         label="ControlNet mode",
            #         choices=["edge_detection", "other"],
            #         value="edge_detection",
            #         max_choices=1
            #     )
            # controlnet_checkbox.change(
            #     controlnet_params, 
            #     inputs=controlnet_checkbox,
            #     outputs=controlnet_params
            # )

        with gr.Accordion("Optional Settings", open=False):
            
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,  # Replace with defaults that work for your model
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,  # Replace with defaults that work for your model
                )
        
        run_button = gr.Button("Run", scale=0, variant="primary")
        result = gr.Image(label="Result", show_label=False)
            
    gr.on(
        triggers=[run_button.click],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            width,
            height,
            model_id,
            seed,
            guidance_scale,      
            lora_scale,
            num_inference_steps
            
        ],
        outputs=[result],
    )

if __name__ == "__main__":
    demo.launch()