File size: 3,798 Bytes
7cffda1
 
 
 
 
 
 
 
 
2be0274
7cffda1
 
 
 
 
 
1168b4e
7cffda1
 
 
 
 
 
 
 
 
372ff8e
 
2be0274
 
7cffda1
2be0274
7cffda1
2be0274
 
 
7cffda1
 
 
 
 
 
 
 
 
2be0274
 
7cffda1
 
 
 
 
 
 
 
 
 
1168b4e
7cffda1
 
1168b4e
 
7cffda1
1168b4e
 
7cffda1
 
1168b4e
 
 
 
 
7cffda1
1168b4e
 
 
 
 
7cffda1
1168b4e
 
7cffda1
 
 
 
1168b4e
7cffda1
 
1168b4e
 
 
 
 
 
 
 
7cffda1
1168b4e
 
 
 
 
 
 
 
 
7cffda1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1168b4e
 
 
 
7cffda1
289a338
7cffda1
 
 
 
 
 
372ff8e
 
7cffda1
372ff8e
7cffda1
1168b4e
7cffda1
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import gradio as gr
import numpy as np
import random

# import spaces #[uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline
import torch

device = "cuda" if torch.cuda.is_available() else "cpu"
model_id_default = "CompVis/stable-diffusion-v1-4"  # Replace to the model you would like to use

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024


# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
    prompt,
    negative_prompt,
    width,
    height,
    model_id=model_id_default,
    seed=42,
    guidance_scale=7.0,
    num_inference_steps=20,
    progress=gr.Progress(track_tqdm=True),
):  
    generator = torch.Generator().manual_seed(seed)
    pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype)
    pipe = pipe.to(device)
    
    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
    ).images[0]
    
    return image

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # Text-to-Image demo")

        with gr.Row():
            model_id = gr.Textbox(
                label="Model ID",
                max_lines=1,
                placeholder="Enter model id",
                value=model_id_default,
            )

        prompt = gr.Textbox(
            label="Prompt",
            max_lines=1,
            placeholder="Enter your prompt",
        )

        negative_prompt = gr.Textbox(
            label="Negative prompt",
            max_lines=1,
            placeholder="Enter your negative prompt",
        )

        with gr.Row():
            seed = gr.Number(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=42,
            )

        with gr.Row():
            guidance_scale = gr.Slider(
                label="Guidance scale",
                minimum=0.0,
                maximum=10.0,
                step=0.1,
                value=7.0,  # Replace with defaults that work for your model
            )

            num_inference_steps = gr.Slider(
                label="Number of inference steps",
                minimum=1,
                maximum=50,
                step=1,
                value=20,  # Replace with defaults that work for your model
            )

        with gr.Accordion("Optional Settings", open=False):
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,  # Replace with defaults that work for your model
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,  # Replace with defaults that work for your model
                )
        
        run_button = gr.Button("Run", scale=0, variant="primary")
        result = gr.Image(label="Result", show_label=False)
        
    gr.on(
        triggers=[run_button.click],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            width,
            height,
            model_id,
            seed,
            guidance_scale,
            num_inference_steps,       
        ],
        outputs=[result],
    )

if __name__ == "__main__":
    demo.launch()