import gradio as gr import cv2 import numpy as np from segment_anything import sam_model_registry, SamAutomaticMaskGenerator import base64 from huggingface_hub import InferenceClient # Load the segmentation model sam_checkpoint = "sam_vit_h_4b8939.pth" model_type = "vit_h" sam = sam_model_registry[model_type](checkpoint=sam_checkpoint) # Define a function for image segmentation def segment_image(input_image): image = cv2.cvtColor(input_image, cv2.COLOR_BGR2RGB) mask_generator = SamAutomaticMaskGenerator(sam) masks = mask_generator.generate(image) highest_cosine_value = -1 highest_cosine_base64 = "" for i, mask_dict in enumerate(masks): mask_data = (mask_dict['segmentation'] * 255).astype(np.uint8) segmented_region = cv2.bitwise_and(input_image, input_image, mask=mask_data) x, y, w, h = map(int, mask_dict['bbox']) cropped_region = segmented_region[y:y+h, x:x+w] # Convert to base64 image _, buffer = cv2.imencode(".png", cv2.cvtColor(cropped_region, cv2.COLOR_BGR2RGB)) segmented_image_base64 = base64.b64encode(buffer).decode() # Call the API to get the cosine similarity client = InferenceClient() result = client.post(json={"inputs": segmented_image_base64}, model="https://ktllc-clip-model-inputbase64.hf.space/--replicas/mmz7z/") cosine_similarity = result[0].get("score", 0.0) if cosine_similarity > highest_cosine_value: highest_cosine_value = cosine_similarity highest_cosine_base64 = segmented_image_base64 return highest_cosine_base64 # Create Gradio components input_image = gr.inputs.Image() output_image = gr.outputs.Image(type="pil") # Create a Gradio interface gr.Interface(fn=segment_image, inputs=input_image, outputs=output_image).launch()