ktllc commited on
Commit
eacdfe4
·
1 Parent(s): d3f5c13

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -35
app.py CHANGED
@@ -92,44 +92,10 @@ def segment_image(input_image, text_input):
92
  # Return the segmented images in descending order of similarity
93
  return segmented_regions
94
 
95
-
96
- # def segment_image(input_image, text_input):
97
- # image_bytes = base64.b64decode(input_image)
98
- # image = Image.open(BytesIO(image_bytes))
99
-
100
- # image = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2RGB)
101
- # mask_generator = SamAutomaticMaskGenerator(sam)
102
- # masks = mask_generator.generate(image)
103
-
104
- # segmented_regions = [] # List to store segmented regions with similarity scores
105
-
106
- # for i, mask_dict in enumerate(masks):
107
- # mask_data = (mask_dict['segmentation'] * 255).astype(np.uint8)
108
- # segmented_region = cv2.bitwise_and(image, image, mask=mask_data)
109
-
110
- # x, y, w, h = map(int, mask_dict['bbox'])
111
- # cropped_region = segmented_region[y:y+h, x:x+w]
112
-
113
- # # Convert to base64 image
114
- # _, buffer = cv2.imencode(".png", cv2.cvtColor(cropped_region, cv2.COLOR_BGR2RGB))
115
- # segmented_image_base64 = base64.b64encode(buffer).decode()
116
-
117
- # # Calculate similarity for the segmented image
118
- # similarity = find_similarity(segmented_image_base64, text_input)
119
-
120
- # # Append the segmented image and its similarity score
121
- # segmented_regions.append({"image": segmented_image_base64, "similarity": similarity})
122
-
123
- # # Sort the segmented images by similarity in descending order
124
- # segmented_regions.sort(key=lambda x: x["similarity"], reverse=True)
125
-
126
- # # Return the segmented images in descending order of similarity
127
- # return segmented_regions
128
-
129
  # Create Gradio components
130
  input_image = gr.Textbox(label="Base64 Image", lines=8)
131
  text_input = gr.Textbox(label="Text Input") # Use Textbox with a label
132
  output_images = gr.outputs.JSON()
133
 
134
  # Create a Gradio interface
135
- gr.Interface(fn=segment_image, inputs=[input_image, text_input], outputs=output_images).launch()
 
92
  # Return the segmented images in descending order of similarity
93
  return segmented_regions
94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95
  # Create Gradio components
96
  input_image = gr.Textbox(label="Base64 Image", lines=8)
97
  text_input = gr.Textbox(label="Text Input") # Use Textbox with a label
98
  output_images = gr.outputs.JSON()
99
 
100
  # Create a Gradio interface
101
+ gr.Interface(fn=segment_image, inputs=[input_image, text_input], outputs=output_images).launch(max_responses=6)