ktllc's picture
Update app.py
552a7da
raw
history blame
3.4 kB
import gradio as gr
import numpy as np
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator
import base64
from PIL import Image
from io import BytesIO
import torch
import clip
import json
# Load the segmentation model
sam_checkpoint = "sam_vit_h_4b8939.pth"
model_type = "vit_h"
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
# Load the CLIP model
model, preprocess = clip.load("ViT-B/32")
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device).eval()
def find_similarity(base64_image, text_input):
try:
# Decode the base64 image to bytes
image_bytes = base64.b64decode(base64_image)
# Convert the bytes to a PIL image
image = Image.open(BytesIO(image_bytes))
# Preprocess the image
image = preprocess(image).unsqueeze(0).to(device)
# Prepare input text
text_tokens = clip.tokenize([text_input]).to(device)
# Encode image and text features
with torch.no_grad():
image_features = model.encode_image(image)
text_features = model.encode_text(text_tokens)
# Normalize features and calculate similarity
image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)
similarity = (text_features @ image_features.T).squeeze(0).cpu().numpy()
return similarity
except Exception as e:
return json.dumps({"error": str(e)})
def segment_image(input_image, text_input):
try:
image_bytes = base64.b64decode(input_image)
image = Image.open(BytesIO(image_bytes))
# Convert the image to RGB color mode
image = image.convert("RGB")
mask_generator = SamAutomaticMaskGenerator(sam)
masks = mask_generator.generate(image)
segmented_regions = [] # List to store segmented regions with similarity scores
for i, mask_dict in enumerate(masks):
mask_data = (mask_dict['segmentation'] * 255).astype(np.uint8)
segmented_region = Image.fromarray(mask_data) # Convert mask to an image
x, y, w, h = map(int, mask_dict['bbox'])
cropped_region = image.crop((x, y, x + w, y + h))
# Convert to base64 image
buffered = BytesIO()
cropped_region.save(buffered, format="PNG")
segmented_image_base64 = base64.b64encode(buffered.getvalue()).decode()
# Calculate similarity for the segmented image
similarity = find_similarity(segmented_image_base64, text_input)
# Append the segmented image and its similarity score
segmented_regions.append({"image": segmented_image_base64, "similarity": similarity})
# Sort the segmented images by similarity in descending order
segmented_regions.sort(key=lambda x: x["similarity"], reverse=True)
# Return the segmented images in a JSON format
return json.dumps(segmented_regions)
except Exception as e:
return json.dumps({"error": str(e)})
# Create Gradio components
input_image = gr.Textbox(label="Base64 Image", lines=8)
text_input = gr.Textbox(label="Text Input") # Use Textbox with a label
output_images = gr.outputs.JSON()
# Create a Gradio interface
gr.Interface(fn=segment_image, inputs=[input_image, text_input], outputs=output_images).launch()