File size: 1,558 Bytes
39113b9 30d5af0 69aa3f2 39113b9 82eb2a3 d3bd556 30d5af0 feb267b f2e596b 30d5af0 39113b9 9f13edb 30d5af0 21edb75 69aa3f2 ad91d57 30d5af0 ad91d57 625973c ad91d57 21edb75 2b19e7c 345caa6 30d5af0 39113b9 30d5af0 c652364 8e4b98b c652364 5cbcd45 b1e58f3 30d5af0 39113b9 30d5af0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import gradio as gr
import numpy as np
import clip
import torch
from PIL import Image
import base64
from io import BytesIO
from decimal import Decimal
# Load the CLIP model
model, preprocess = clip.load("ViT-L/14@336px")
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device).eval()
# Define a function to find similarity
def find_similarity(base64_image, text_input):
# Decode the base64 image to bytes
image_bytes = base64.b64decode(base64_image)
# Convert the bytes to a PIL image
image = Image.open(BytesIO(image_bytes))
# Preprocess the image
image = preprocess(image).unsqueeze(0).to(device)
# Prepare input text
text_tokens = clip.tokenize([text_input]).to(device)
# Encode image and text features
with torch.no_grad():
image_features = model.encode_image(image)
text_features = model.encode_text(text_tokens)
# Normalize features and calculate similarity
image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)
similarity = (text_features @ image_features.T).squeeze(0).cpu().numpy()
return similarity
# Create a Gradio interface
iface = gr.Interface(
fn=find_similarity,
inputs=[
gr.Textbox(label="Base64 Image", lines=8),
gr.Textbox(label="Text Input")
],
outputs="number",
live=True,
title="CLIP Model Image-Text Cosine Similarity",
description="Upload a base64 image and enter text to find their cosine similarity.",
)
iface.launch()
|