Spaces:
Running
on
Zero
Running
on
Zero
Add new model
Browse files- model/model_manager.py +3 -2
- model/models/__init__.py +9 -15
- model/models/huggingface_models.py +3 -5
- model/models/openai_api_models.py +50 -24
- model/models/other_api_models.py +84 -0
model/model_manager.py
CHANGED
|
@@ -5,6 +5,7 @@ import requests
|
|
| 5 |
import io, base64, json
|
| 6 |
import spaces
|
| 7 |
from PIL import Image
|
|
|
|
| 8 |
from .models import IMAGE_GENERATION_MODELS, IMAGE_EDITION_MODELS, load_pipeline
|
| 9 |
from .fetch_museum_results import draw_from_imagen_museum, draw2_from_imagen_museum
|
| 10 |
from serve.upload import get_random_mscoco_prompt
|
|
@@ -26,7 +27,7 @@ class ModelManager:
|
|
| 26 |
@spaces.GPU(duration=120)
|
| 27 |
def generate_image_ig(self, prompt, model_name):
|
| 28 |
pipe = self.load_model_pipe(model_name)
|
| 29 |
-
if 'cascade' not in name:
|
| 30 |
result = pipe(prompt=prompt).images[0]
|
| 31 |
else:
|
| 32 |
prior, decoder = pipe
|
|
@@ -40,7 +41,6 @@ class ModelManager:
|
|
| 40 |
num_images_per_prompt=1,
|
| 41 |
num_inference_steps=20
|
| 42 |
)
|
| 43 |
-
|
| 44 |
decoder.enable_model_cpu_offload()
|
| 45 |
result = decoder(
|
| 46 |
image_embeddings=prior_output.image_embeddings.to(torch.float16),
|
|
@@ -55,6 +55,7 @@ class ModelManager:
|
|
| 55 |
def generate_image_ig_api(self, prompt, model_name):
|
| 56 |
pipe = self.load_model_pipe(model_name)
|
| 57 |
result = pipe(prompt=prompt)
|
|
|
|
| 58 |
return result
|
| 59 |
|
| 60 |
def generate_image_ig_museum(self, model_name):
|
|
|
|
| 5 |
import io, base64, json
|
| 6 |
import spaces
|
| 7 |
from PIL import Image
|
| 8 |
+
from openai import OpenAI
|
| 9 |
from .models import IMAGE_GENERATION_MODELS, IMAGE_EDITION_MODELS, load_pipeline
|
| 10 |
from .fetch_museum_results import draw_from_imagen_museum, draw2_from_imagen_museum
|
| 11 |
from serve.upload import get_random_mscoco_prompt
|
|
|
|
| 27 |
@spaces.GPU(duration=120)
|
| 28 |
def generate_image_ig(self, prompt, model_name):
|
| 29 |
pipe = self.load_model_pipe(model_name)
|
| 30 |
+
if 'Stable-cascade' not in name:
|
| 31 |
result = pipe(prompt=prompt).images[0]
|
| 32 |
else:
|
| 33 |
prior, decoder = pipe
|
|
|
|
| 41 |
num_images_per_prompt=1,
|
| 42 |
num_inference_steps=20
|
| 43 |
)
|
|
|
|
| 44 |
decoder.enable_model_cpu_offload()
|
| 45 |
result = decoder(
|
| 46 |
image_embeddings=prior_output.image_embeddings.to(torch.float16),
|
|
|
|
| 55 |
def generate_image_ig_api(self, prompt, model_name):
|
| 56 |
pipe = self.load_model_pipe(model_name)
|
| 57 |
result = pipe(prompt=prompt)
|
| 58 |
+
|
| 59 |
return result
|
| 60 |
|
| 61 |
def generate_image_ig_museum(self, model_name):
|
model/models/__init__.py
CHANGED
|
@@ -5,21 +5,8 @@ from .fal_api_models import load_fal_model
|
|
| 5 |
from .huggingface_models import load_huggingface_model
|
| 6 |
from .replicate_api_models import load_replicate_model
|
| 7 |
from .openai_api_models import load_openai_model
|
|
|
|
| 8 |
|
| 9 |
-
# IMAGE_GENERATION_MODELS = ['huggingface_SD-v1.5_text2image',
|
| 10 |
-
# 'huggingface_SD-v2.1_text2image',
|
| 11 |
-
# 'huggingface_SD-XL-v1.0_text2image',
|
| 12 |
-
# 'huggingface_IF-I-XL-v1.0_text2image',
|
| 13 |
-
# ]
|
| 14 |
-
|
| 15 |
-
# IMAGE_GENERATION_MODELS = [ 'imagenhub_SD_generation',
|
| 16 |
-
# 'imagenhub_SDXL_generation',
|
| 17 |
-
# 'imagenhub_OpenJourney_generation',
|
| 18 |
-
# 'imagenhub_LCM_generation',
|
| 19 |
-
# 'imagenhub_DeepFloydIF_generation',
|
| 20 |
-
# 'imagenhub_PixArtAlpha_generation',
|
| 21 |
-
# 'imagenhub_Kandinsky_generation',
|
| 22 |
-
# ]
|
| 23 |
|
| 24 |
IMAGE_GENERATION_MODELS = [
|
| 25 |
'replicate_SDXL_text2image',
|
|
@@ -44,6 +31,11 @@ IMAGE_GENERATION_MODELS = [
|
|
| 44 |
'replicate_Deepfloyd-IF_text2image',
|
| 45 |
'huggingface_SD-turbo_text2image',
|
| 46 |
'huggingface_SDXL-turbo_text2image',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
]
|
| 48 |
|
| 49 |
|
|
@@ -78,7 +70,9 @@ def load_pipeline(model_name):
|
|
| 78 |
elif model_source == "huggingface":
|
| 79 |
pipe = load_huggingface_model(model_name, model_type)
|
| 80 |
elif model_source == "openai":
|
| 81 |
-
pipe = load_openai_model(model_name)
|
|
|
|
|
|
|
| 82 |
else:
|
| 83 |
raise ValueError(f"Model source {model_source} not supported")
|
| 84 |
return pipe
|
|
|
|
| 5 |
from .huggingface_models import load_huggingface_model
|
| 6 |
from .replicate_api_models import load_replicate_model
|
| 7 |
from .openai_api_models import load_openai_model
|
| 8 |
+
from .other_api_models import load_other_model
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
IMAGE_GENERATION_MODELS = [
|
| 12 |
'replicate_SDXL_text2image',
|
|
|
|
| 31 |
'replicate_Deepfloyd-IF_text2image',
|
| 32 |
'huggingface_SD-turbo_text2image',
|
| 33 |
'huggingface_SDXL-turbo_text2image',
|
| 34 |
+
'huggingface_Stable-cascade_text2image',
|
| 35 |
+
'openai_Dalle-2_text2image',
|
| 36 |
+
'openai_Dalle-3_text2image',
|
| 37 |
+
'other_Midjourney-v6.0_text2image',
|
| 38 |
+
'other_Midjourney-v5.0_text2image',
|
| 39 |
]
|
| 40 |
|
| 41 |
|
|
|
|
| 70 |
elif model_source == "huggingface":
|
| 71 |
pipe = load_huggingface_model(model_name, model_type)
|
| 72 |
elif model_source == "openai":
|
| 73 |
+
pipe = load_openai_model(model_name, model_type)
|
| 74 |
+
elif model_source == "other":
|
| 75 |
+
pipe = load_other_model(model_name, model_type)
|
| 76 |
else:
|
| 77 |
raise ValueError(f"Model source {model_source} not supported")
|
| 78 |
return pipe
|
model/models/huggingface_models.py
CHANGED
|
@@ -4,8 +4,6 @@ from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline
|
|
| 4 |
import torch
|
| 5 |
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
def load_huggingface_model(model_name, model_type):
|
| 10 |
if model_name == "SD-turbo":
|
| 11 |
pipe = AutoPipelineForText2Image.from_pretrained("stabilityai/sd-turbo", torch_dtype=torch.float16, variant="fp16")
|
|
@@ -30,10 +28,10 @@ def load_huggingface_model(model_name, model_type):
|
|
| 30 |
|
| 31 |
|
| 32 |
if __name__ == "__main__":
|
| 33 |
-
for name in ["SD-turbo", "SDXL-turbo"]: #"SD-turbo", "SDXL-turbo"
|
| 34 |
-
|
| 35 |
-
|
| 36 |
|
| 37 |
# for name in ["IF-I-XL-v1.0"]:
|
| 38 |
# pipe = load_huggingface_model(name, 'text2image')
|
| 39 |
# pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
|
|
|
|
|
|
| 4 |
import torch
|
| 5 |
|
| 6 |
|
|
|
|
|
|
|
| 7 |
def load_huggingface_model(model_name, model_type):
|
| 8 |
if model_name == "SD-turbo":
|
| 9 |
pipe = AutoPipelineForText2Image.from_pretrained("stabilityai/sd-turbo", torch_dtype=torch.float16, variant="fp16")
|
|
|
|
| 28 |
|
| 29 |
|
| 30 |
if __name__ == "__main__":
|
| 31 |
+
# for name in ["SD-turbo", "SDXL-turbo"]: #"SD-turbo", "SDXL-turbo"
|
| 32 |
+
# pipe = load_huggingface_model(name, "text2image")
|
|
|
|
| 33 |
|
| 34 |
# for name in ["IF-I-XL-v1.0"]:
|
| 35 |
# pipe = load_huggingface_model(name, 'text2image')
|
| 36 |
# pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
|
| 37 |
+
|
model/models/openai_api_models.py
CHANGED
|
@@ -1,33 +1,59 @@
|
|
| 1 |
from openai import OpenAI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
model="dall-e-3",
|
| 10 |
-
prompt="a white siamese cat",
|
| 11 |
-
size="1024x1024",
|
| 12 |
-
quality="standard",
|
| 13 |
-
n=1,
|
| 14 |
-
)
|
| 15 |
-
elif model_name == "Dalle-2":
|
| 16 |
-
response = client.images.generate(
|
| 17 |
-
model="dall-e-2",
|
| 18 |
-
prompt="a white siamese cat",
|
| 19 |
-
size="512x512",
|
| 20 |
-
quality="standard",
|
| 21 |
-
n=1,
|
| 22 |
-
)
|
| 23 |
-
else:
|
| 24 |
-
raise NotImplementedError
|
| 25 |
|
| 26 |
-
|
| 27 |
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
|
| 31 |
if __name__ == "__main__":
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
|
|
| 1 |
from openai import OpenAI
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import requests
|
| 4 |
+
import io
|
| 5 |
+
import os
|
| 6 |
+
import base64
|
| 7 |
|
| 8 |
|
| 9 |
+
class OpenaiModel():
|
| 10 |
+
def __init__(self, model_name, model_type):
|
| 11 |
+
self.model_name = model_name
|
| 12 |
+
self.model_type = model_type
|
| 13 |
+
|
| 14 |
+
def __call__(self, *args, **kwargs):
|
| 15 |
|
| 16 |
+
if self.model_type == "text2image":
|
| 17 |
+
assert "prompt" in kwargs, "prompt is required for text2image model"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
+
client = OpenAI()
|
| 20 |
|
| 21 |
+
if 'Dalle-3' in self.model_name:
|
| 22 |
+
client = OpenAI()
|
| 23 |
+
response = client.images.generate(
|
| 24 |
+
model="dall-e-3",
|
| 25 |
+
prompt=kwargs["prompt"],
|
| 26 |
+
size="1024x1024",
|
| 27 |
+
quality="standard",
|
| 28 |
+
n=1,
|
| 29 |
+
)
|
| 30 |
+
elif 'Dalle-2' in self.model_name:
|
| 31 |
+
client = OpenAI()
|
| 32 |
+
response = client.images.generate(
|
| 33 |
+
model="dall-e-2",
|
| 34 |
+
prompt=kwargs["prompt"],
|
| 35 |
+
size="512x512",
|
| 36 |
+
quality="standard",
|
| 37 |
+
n=1,
|
| 38 |
+
)
|
| 39 |
+
else:
|
| 40 |
+
raise NotImplementedError
|
| 41 |
+
|
| 42 |
+
result_url = response.data[0].url
|
| 43 |
+
response = requests.get(result_url)
|
| 44 |
+
result = Image.open(io.BytesIO(response.content))
|
| 45 |
+
return result
|
| 46 |
+
else:
|
| 47 |
+
raise ValueError("model_type must be text2image or image2image")
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def load_openai_model(model_name, model_type):
|
| 52 |
+
return OpenaiModel(model_name, model_type)
|
| 53 |
|
| 54 |
|
| 55 |
if __name__ == "__main__":
|
| 56 |
+
pipe = load_openai_model('Dalle-2', 'text2image')
|
| 57 |
+
result = pipe(prompt='draw a tiger')
|
| 58 |
+
print(result)
|
| 59 |
+
|
model/models/other_api_models.py
ADDED
|
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import requests
|
| 2 |
+
import json
|
| 3 |
+
import os
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import io, time
|
| 6 |
+
|
| 7 |
+
class OtherModel():
|
| 8 |
+
def __init__(self, model_name, model_type):
|
| 9 |
+
self.model_name = model_name
|
| 10 |
+
self.model_type = model_type
|
| 11 |
+
self.url = "https://www.xdai.online/mj/submit/imagine"
|
| 12 |
+
self.key = os.environ.get('MIDJOURNEY_KEY')
|
| 13 |
+
self.get_url = "https://www.xdai.online/mj/image/"
|
| 14 |
+
self.repeat_num = 5
|
| 15 |
+
|
| 16 |
+
def __call__(self, *args, **kwargs):
|
| 17 |
+
if self.model_type == "text2image":
|
| 18 |
+
assert "prompt" in kwargs, "prompt is required for text2image model"
|
| 19 |
+
if self.model_name == "Midjourney-v6.0":
|
| 20 |
+
data = {
|
| 21 |
+
"base64Array": [],
|
| 22 |
+
"notifyHook": "",
|
| 23 |
+
"prompt": "{} --v 6.0".format(kwargs["prompt"]),
|
| 24 |
+
"state": "",
|
| 25 |
+
"botType": "MID_JOURNEY",
|
| 26 |
+
}
|
| 27 |
+
elif self.model_name == "Midjourney-v5.0":
|
| 28 |
+
data = {
|
| 29 |
+
"base64Array": [],
|
| 30 |
+
"notifyHook": "",
|
| 31 |
+
"prompt": "{} --v 5.0".format(kwargs["prompt"]),
|
| 32 |
+
"state": "",
|
| 33 |
+
"botType": "MID_JOURNEY",
|
| 34 |
+
}
|
| 35 |
+
else:
|
| 36 |
+
raise NotImplementedError
|
| 37 |
+
|
| 38 |
+
headers = {
|
| 39 |
+
"Authorization": "Bearer {}".format(self.key),
|
| 40 |
+
"Content-Type": "application/json"
|
| 41 |
+
}
|
| 42 |
+
while 1:
|
| 43 |
+
response = requests.post(self.url, data=json.dumps(data), headers=headers)
|
| 44 |
+
if response.status_code == 200:
|
| 45 |
+
print("Submit success!")
|
| 46 |
+
response_json = json.loads(response.content.decode('utf-8'))
|
| 47 |
+
img_id = response_json["result"]
|
| 48 |
+
result_url = self.get_url + img_id
|
| 49 |
+
self.repeat_num = 120
|
| 50 |
+
while 1:
|
| 51 |
+
time.sleep(1)
|
| 52 |
+
img_response = requests.get(result_url)
|
| 53 |
+
if img_response.status_code == 200:
|
| 54 |
+
result = Image.open(io.BytesIO(img_response.content))
|
| 55 |
+
width, height = result.size
|
| 56 |
+
new_width = width // 2
|
| 57 |
+
new_height = height // 2
|
| 58 |
+
result = result.crop((0, 0, new_width, new_height))
|
| 59 |
+
self.repeat_num = 5
|
| 60 |
+
return result
|
| 61 |
+
else:
|
| 62 |
+
self.repeat_num = self.repeat_num - 1
|
| 63 |
+
if self.repeat_num == 0:
|
| 64 |
+
raise ValueError("Image request failed.")
|
| 65 |
+
continue
|
| 66 |
+
|
| 67 |
+
else:
|
| 68 |
+
self.repeat_num = self.repeat_num - 1
|
| 69 |
+
if self.repeat_num == 0:
|
| 70 |
+
raise ValueError("API request failed.")
|
| 71 |
+
continue
|
| 72 |
+
else:
|
| 73 |
+
raise ValueError("model_type must be text2image")
|
| 74 |
+
def load_other_model(model_name, model_type):
|
| 75 |
+
return OtherModel(model_name, model_type)
|
| 76 |
+
|
| 77 |
+
if __name__ == "__main__":
|
| 78 |
+
|
| 79 |
+
pipe = load_other_model("Midjourney-v5.0", "text2image")
|
| 80 |
+
result = pipe(prompt="a good girl")
|
| 81 |
+
print(result)
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
|