File size: 6,124 Bytes
3427608
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffc77cb
 
3427608
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffc77cb
3427608
512e129
3427608
 
 
 
 
 
 
 
ffc77cb
 
 
3427608
 
8e65357
ffc77cb
3427608
 
 
 
 
ffc77cb
3427608
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
512e129
3427608
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffc77cb
3427608
 
 
 
 
 
 
 
 
 
 
 
 
 
ffc77cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
"""
Live monitor of the website statistics and leaderboard.

Dependency:
sudo apt install pkg-config libicu-dev
pip install pytz gradio gdown plotly polyglot pyicu pycld2 tabulate
"""

import argparse
import ast
import pickle
import os
import threading
import time

import gradio as gr
import numpy as np
import pandas as pd
import json
from datetime import datetime


# def make_leaderboard_md(elo_results):
#     leaderboard_md = f"""
# # πŸ† Chatbot Arena Leaderboard
# | [Blog](https://lmsys.org/blog/2023-05-03-arena/) | [GitHub](https://github.com/lm-sys/FastChat) | [Paper](https://arxiv.org/abs/2306.05685) | [Dataset](https://github.com/lm-sys/FastChat/blob/main/docs/dataset_release.md) | [Twitter](https://twitter.com/lmsysorg) | [Discord](https://discord.gg/HSWAKCrnFx) |

# This leaderboard is based on the following three benchmarks.
# - [Chatbot Arena](https://lmsys.org/blog/2023-05-03-arena/) - a crowdsourced, randomized battle platform. We use 100K+ user votes to compute Elo ratings.
# - [MT-Bench](https://arxiv.org/abs/2306.05685) - a set of challenging multi-turn questions. We use GPT-4 to grade the model responses.
# - [MMLU](https://arxiv.org/abs/2009.03300) (5-shot) - a test to measure a model's multitask accuracy on 57 tasks.

# πŸ’» Code: The Arena Elo ratings are computed by this [notebook]({notebook_url}). The MT-bench scores (single-answer grading on a scale of 10) are computed by [fastchat.llm_judge](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge). The MMLU scores are mostly computed by [InstructEval](https://github.com/declare-lab/instruct-eval). Higher values are better for all benchmarks. Empty cells mean not available. Last updated: November, 2023.
# """
#     return leaderboard_md

def make_leaderboard_md():
    leaderboard_md = f"""
# πŸ† K-Sort-Arena Leaderboard
"""

    return leaderboard_md

def model_hyperlink(model_name, link):
    return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'


def make_arena_leaderboard_md(total_models, total_votes):
    last_updated = datetime.now()
    last_updated = last_updated.strftime("%Y-%m-%d")

    leaderboard_md = f"""
Total #models: **{total_models}**(anonymous). Total #votes: **{total_votes}** (Equivalent to **{total_votes*6}** votes for one-on-one games). 
\n Last updated: {last_updated}.
"""

    return leaderboard_md


'''
def build_leaderboard_tab(elo_results_file, leaderboard_table_file, show_plot=False):
    if elo_results_file is None:  # Do live update
        md = "Loading ..."
        p1 = p2 = p3 = p4 = None
    else:
        with open(elo_results_file, "rb") as fin:
            elo_results = pickle.load(fin)

        anony_elo_results = elo_results["anony"]
        full_elo_results = elo_results["full"]
        anony_arena_df = anony_elo_results["leaderboard_table_df"]
        full_arena_df = full_elo_results["leaderboard_table_df"]
        p1 = anony_elo_results["win_fraction_heatmap"]
        p2 = anony_elo_results["battle_count_heatmap"]
        p3 = anony_elo_results["bootstrap_elo_rating"]
        p4 = anony_elo_results["average_win_rate_bar"]
        
        md = make_leaderboard_md(anony_elo_results)
        
    md_1 = gr.Markdown(md, elem_id="leaderboard_markdown")

    if leaderboard_table_file:
        model_table_df = load_leaderboard_table_csv(leaderboard_table_file)
        with gr.Tabs() as tabs:
            # arena table
            arena_table_vals = get_arena_table(anony_arena_df, model_table_df)
            with gr.Tab("Arena Score", id=0):
                md = make_arena_leaderboard_md(anony_elo_results)
                gr.Markdown(md, elem_id="leaderboard_markdown")
                gr.Dataframe(
                    headers=[
                        "Rank",
                        "πŸ€– Model",
                        "⭐ Arena Elo",
                        "πŸ“Š 95% CI",
                        "πŸ—³οΈ Votes",
                        "Organization",
                        "License",
                    ],
                    datatype=[
                        "str",
                        "markdown",
                        "number",
                        "str",
                        "number",
                        "str",
                        "str",
                    ],
                    value=arena_table_vals,
                    elem_id="arena_leaderboard_dataframe",
                    height=700,
                    column_widths=[50, 200, 100, 100, 100, 150, 150],
                    wrap=True,
                )

        if not show_plot:
            gr.Markdown(
                """ ## The leaderboard is updated frequently and continues to incorporate new models. 
                """,
                elem_id="leaderboard_markdown",
            )
    else:
        pass

    leader_component_values[:] = [md, p1, p2, p3, p4]


    from .utils import acknowledgment_md

    gr.Markdown(acknowledgment_md)

    # return [md_1, plot_1, plot_2, plot_3, plot_4]
    return [md_1]
'''



def make_arena_leaderboard_data(results):
    import pandas as pd
    df = pd.DataFrame(results)
    return df

def build_leaderboard_tab(score_result_file = 'sorted_score_list.json'):
    with open(score_result_file, "r") as json_file:
        data = json.load(json_file)
    score_results = data["sorted_score_list"]
    total_models = data["total_models"]
    total_votes = data["total_votes"]

    md = make_leaderboard_md()
    md_1 = gr.Markdown(md, elem_id="leaderboard_markdown")

    with gr.Tab("Arena Score", id=0):
        md = make_arena_leaderboard_md(total_models, total_votes)
        gr.Markdown(md, elem_id="leaderboard_markdown")
        md = make_arena_leaderboard_data(score_results)
        gr.Dataframe(md)
    
    gr.Markdown(
                """ ## The leaderboard is updated frequently and continues to incorporate new models. 
                """,
                elem_id="leaderboard_markdown",
            )
    from .utils import acknowledgment_md
    gr.Markdown(acknowledgment_md)