File size: 655 Bytes
f178f10
82b3215
 
 
 
 
37720a9
82b3215
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer

# Load the LLaMA 3 model and tokenizer
model_name = "kshabana/GOAT-llama3.1-v0.1"  # Replace with the actual model path if different
model = AutoModelForCausalLM.from_pretrained("kshabana/GOAT-llama3.1-v0.1")

def generate_response(user_input):
    inputs = tokenizer.encode(user_input, return_tensors="pt")
    outputs = model.generate(inputs, max_length=50, num_return_sequences=1)
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return response

interface = gr.Interface(fn=generate_response, inputs="text", outputs="text")
interface.launch()