Spaces:
Running
Running
import gradio as gr | |
import pdfplumber | |
import re | |
from transformers import LayoutLMForTokenClassification, AutoTokenizer | |
# Wczytanie modelu LayoutLMv3 | |
model_name = "kryman27/layoutlmv3-finetuned" | |
model = LayoutLMForTokenClassification.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) # Poprawiona wersja | |
# Regu艂y do wykrywania NIP, kwot, dat | |
nip_pattern = re.compile(r'\bPL\s?\d{10}\b|\b\d{10}\b') | |
kwota_pattern = re.compile(r'\b\d+[\.,]?\d*\b') | |
data_pattern = re.compile(r'\b\d{2}\.\d{2}\.\d{4}\b') | |
payment_keywords = ["data p艂atno艣ci", "termin p艂atno艣ci", "zap艂ata", "p艂atno艣膰"] | |
def extract_invoice_data(pdf_file): | |
with pdfplumber.open(pdf_file) as pdf: | |
full_text = "\n".join(page.extract_text() for page in pdf.pages if page.extract_text()) | |
# Podzia艂 tekstu na list臋 s艂贸w (LayoutLMv3 wymaga tokenizacji na poziomie s艂贸w) | |
words = full_text.split() # Nowa poprawiona linia | |
tokens = tokenizer(words, is_split_into_words=True, return_tensors="pt", truncation=True) # Poprawiona linia | |
# Predykcja modelu | |
outputs = model(**tokens) | |
predictions = outputs.logits.argmax(-1).squeeze().tolist() | |
# Przetwarzanie wynik贸w | |
entities = [] | |
for token, pred in zip(words, predictions): # Teraz iterujemy po `words` | |
if pred > 0: # Pomijamy t艂o | |
entities.append((token, model.config.id2label[pred])) | |
# Wyszukiwanie kluczowych warto艣ci | |
seller_name = [token for token, label in entities if "ORG" in label] | |
seller_nip = nip_pattern.search(full_text) | |
kwoty = kwota_pattern.findall(full_text) | |
kwoty = [float(k.replace(",", ".")) for k in kwoty if k.replace(",", ".").replace(".", "").isdigit()] | |
total_amount = max(kwoty) if kwoty else None | |
# Szukamy daty p艂atno艣ci | |
payment_date = None | |
for line in full_text.split("\n"): | |
if any(keyword in line.lower() for keyword in payment_keywords): | |
date_match = data_pattern.search(line) | |
if date_match: | |
payment_date = date_match.group() | |
break | |
return { | |
"Sprzedawca": " ".join(seller_name) if seller_name else "Nie znaleziono", | |
"NIP": seller_nip.group() if seller_nip else "Nie znaleziono", | |
"Kwota ca艂kowita": total_amount if total_amount else "Nie znaleziono", | |
"Data p艂atno艣ci": payment_date if payment_date else "Nie znaleziono" | |
} | |
# Interfejs u偶ytkownika | |
iface = gr.Interface( | |
fn=extract_invoice_data, | |
inputs=gr.File(label="Wybierz plik PDF"), | |
outputs="json", | |
title="Ekstrakcja danych z faktury", | |
description="Prze艣lij plik PDF, a model zwr贸ci dane sprzedawcy, NIP, kwot臋 i dat臋 p艂atno艣ci." | |
) | |
if __name__ == "__main__": | |
iface.launch() | |