pdf-extractor / app.py
kryman27's picture
Update app.py
4b30cd0 verified
raw
history blame
3.8 kB
import gradio as gr
import pdfplumber
import re
from transformers import LayoutLMForTokenClassification, AutoTokenizer
import torch
# Wczytanie modelu LayoutLMv3
model_name = "kryman27/layoutlmv3-finetuned"
model = LayoutLMForTokenClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name) # Automatyczne wykrycie tokenizatora
# Regu艂y do wykrywania NIP, kwot, dat
nip_pattern = re.compile(r'\bPL\s?\d{10}\b|\b\d{10}\b')
kwota_pattern = re.compile(r'\b\d+[\.,]?\d*\s?(PLN|z艂|EUR|USD)?\b') # Rozpoznawanie walut
data_pattern = re.compile(r'\b\d{2}\.\d{2}\.\d{4}\b') # Format DD.MM.YYYY
payment_keywords = ["data p艂atno艣ci", "termin p艂atno艣ci", "zap艂ata", "zap艂acono", "p艂atno艣膰"]
seller_keywords = ["sprzedawca", "faktura wystawiona przez", "wystawca", "nazwa firmy"]
def extract_invoice_data(pdf_file):
with pdfplumber.open(pdf_file) as pdf:
words, boxes, full_text = [], [], []
for page in pdf.pages:
extracted_words = page.extract_words()
for word in extracted_words:
words.append(word['text']) # Pobieramy tekst s艂owa
bbox = [int(word['x0']), int(word['top']), int(word['x1']), int(word['bottom'])] # Zaokr膮glamy warto艣ci
boxes.append(bbox) # Pobieramy bounding box (pozycj臋 s艂owa na stronie)
page_text = page.extract_text()
if page_text:
full_text.append(page_text.lower())
full_text = "\n".join(full_text) # 艁膮czymy ca艂y tekst dokumentu
# Tokenizacja tekstu + dodanie bounding boxes
encoding = tokenizer.encode_plus(words, boxes=boxes, return_tensors="pt", truncation=True)
# Predykcja modelu
with torch.no_grad():
outputs = model(**encoding)
predictions = outputs.logits.argmax(-1).squeeze().tolist()
# Przetwarzanie wynik贸w
entities = []
for token, pred in zip(words, predictions):
if pred > 0: # Pomijamy t艂o
entities.append((token, model.config.id2label[pred]))
# 馃彚 Wyszukiwanie nazwy sprzedawcy
seller_name = [token for token, label in entities if "ORG" in label]
# Je艣li model nie znalaz艂, szukamy w tek艣cie
if not seller_name:
for line in full_text.split("\n"):
if any(keyword in line for keyword in seller_keywords):
seller_name = line.split(":")[-1].strip()
break
# 馃敘 Wyszukiwanie NIP
seller_nip = nip_pattern.search(full_text)
# 馃挵 Wyszukiwanie kwoty ca艂kowitej (najwi臋ksza kwota z walut膮)
kwoty = kwota_pattern.findall(full_text)
kwoty = [k[0].replace(",", ".") for k in kwoty if k[0].replace(",", ".").replace(".", "").isdigit()]
total_amount = max(map(float, kwoty), default=None) if kwoty else None
# 馃搯 Wyszukiwanie daty p艂atno艣ci
payment_date = None
for line in full_text.split("\n"):
if any(keyword in line for keyword in payment_keywords):
date_match = data_pattern.search(line)
if date_match:
payment_date = date_match.group()
break
return {
"Sprzedawca": " ".join(seller_name) if seller_name else "Nie znaleziono",
"NIP": seller_nip.group() if seller_nip else "Nie znaleziono",
"Kwota ca艂kowita": total_amount if total_amount else "Nie znaleziono",
"Data p艂atno艣ci": payment_date if payment_date else "Nie znaleziono"
}
# Interfejs u偶ytkownika
iface = gr.Interface(
fn=extract_invoice_data,
inputs=gr.File(label="Wybierz plik PDF"),
outputs="json",
title="Ekstrakcja danych z faktury",
description="Prze艣lij plik PDF, a model zwr贸ci dane sprzedawcy, NIP, kwot臋 i dat臋 p艂atno艣ci."
)
if __name__ == "__main__":
iface.launch()