Spaces:
Sleeping
Sleeping
File size: 1,158 Bytes
9633d94 bee5682 9633d94 bee5682 31e8f8b 9633d94 31e8f8b 9633d94 31e8f8b bee5682 9633d94 bee5682 9633d94 bee5682 31e8f8b 9633d94 bee5682 31e8f8b bee5682 9633d94 31e8f8b bee5682 31e8f8b bee5682 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
from transformers import AutoProcessor, AutoModelForCausalLM
from PIL import Image
import gradio as gr
# Load the processor and model
processor = AutoProcessor.from_pretrained("microsoft/git-base-coco")
model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-coco")
# Define the captioning function
def caption_image(image):
# Process the image
pixel_values = processor(images=image, return_tensors="pt").pixel_values
# Generate captions
generated_ids = model.generate(pixel_values=pixel_values, max_length=50)
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return generated_caption
# Define Gradio interface components
inputs = [
gr.inputs.Image(type='pil', label='Upload Image')
]
outputs = [
gr.outputs.Textbox(label='Generated Caption')
]
# Define Gradio app properties
title = "Image Captioning Application"
description = "Upload an image to see the caption generated by the model"
# Create and launch the Gradio interface
gr.Interface(
fn=caption_image,
inputs=inputs,
outputs=outputs,
title=title,
description=description,
).launch(debug=True)
|