Commit
·
f7871c8
1
Parent(s):
7b636e6
Top animes recommender app completed
Browse files
app.py
CHANGED
@@ -21,11 +21,7 @@ if "anime_data" not in st.session_state or "anime_user_ratings" not in st.sessio
|
|
21 |
|
22 |
# Load models only once
|
23 |
if "models_loaded" not in st.session_state:
|
24 |
-
st.session_state.models_loaded = {}
|
25 |
-
|
26 |
-
# Define your repository name
|
27 |
-
# models_repo = MODELS_FILEPATH
|
28 |
-
|
29 |
# Load models
|
30 |
st.session_state.models_loaded["cosine_similarity_model"] = hf_hub_download(MODELS_FILEPATH, MODEL_TRAINER_COSINESIMILARITY_MODEL_NAME)
|
31 |
st.session_state.models_loaded["item_based_knn_model_path"] = hf_hub_download(MODELS_FILEPATH, MODEL_TRAINER_ITEM_KNN_TRAINED_MODEL_NAME)
|
@@ -48,32 +44,13 @@ if "models_loaded" not in st.session_state:
|
|
48 |
anime_data = st.session_state.anime_data
|
49 |
anime_user_ratings = st.session_state.anime_user_ratings
|
50 |
|
51 |
-
# Display dataset info
|
52 |
-
st.write("Anime Data:")
|
53 |
-
st.dataframe(anime_data.head())
|
54 |
|
55 |
-
st.write("Anime User Ratings Data:")
|
56 |
-
st.dataframe(anime_user_ratings.head())
|
57 |
-
|
58 |
-
# # Define your repository name
|
59 |
-
# models_repo= MODELS_FILEPATH
|
60 |
-
|
61 |
-
# # Load models
|
62 |
-
|
63 |
-
# item_based_knn_model_path = hf_hub_download(repo_name, MODEL_TRAINER_ITEM_KNN_TRAINED_MODEL_NAME)
|
64 |
-
# user_based_knn_model_path = hf_hub_download(repo_name, MODEL_TRAINER_USER_KNN_TRAINED_MODEL_NAME)
|
65 |
-
# svd_model_path = hf_hub_download(repo_name,MODEL_TRAINER_SVD_TRAINED_MODEL_NAME)
|
66 |
-
|
67 |
-
# with open(item_based_knn_model_path, "rb") as f:
|
68 |
-
# item_based_knn_model = joblib.load(f)
|
69 |
-
|
70 |
-
# with open(user_based_knn_model_path, "rb") as f:
|
71 |
-
# user_based_knn_model = joblib.load(f)
|
72 |
-
|
73 |
-
# with open(svd_model_path, "rb") as f:
|
74 |
-
# svd_model = joblib.load(f)
|
75 |
-
|
76 |
-
|
77 |
# Access the models from session state
|
78 |
cosine_similarity_model_path = hf_hub_download(MODELS_FILEPATH, MODEL_TRAINER_COSINESIMILARITY_MODEL_NAME)
|
79 |
item_based_knn_model = st.session_state.models_loaded["item_based_knn_model"]
|
@@ -87,11 +64,11 @@ app_selector = st.sidebar.radio(
|
|
87 |
)
|
88 |
|
89 |
if app_selector == "Content-Based Recommender":
|
90 |
-
st.title("Content-Based
|
91 |
try:
|
92 |
|
93 |
anime_list = anime_data["name"].tolist()
|
94 |
-
anime_name = st.selectbox("
|
95 |
|
96 |
# Set number of recommendations
|
97 |
max_recommendations = min(len(anime_data), 100)
|
@@ -146,17 +123,17 @@ elif app_selector == "Collaborative Recommender":
|
|
146 |
# Sidebar for choosing the collaborative filtering method
|
147 |
collaborative_method = st.sidebar.selectbox(
|
148 |
"Choose a collaborative filtering method:",
|
149 |
-
["
|
150 |
)
|
151 |
|
152 |
# User input
|
153 |
if collaborative_method == "SVD Collaborative Filtering" or collaborative_method == "User-Based Collaborative Filtering":
|
154 |
-
user_ids = anime_user_ratings['user_id'].unique()
|
155 |
-
user_id = st.selectbox("
|
156 |
n_recommendations = st.slider("Number of Recommendations:", min_value=1, max_value=50, value=10)
|
157 |
elif collaborative_method == "Anime-Based KNN Collaborative Filtering":
|
158 |
-
anime_list = anime_user_ratings["name"].dropna().unique().tolist()
|
159 |
-
anime_name = st.selectbox("
|
160 |
n_recommendations = st.slider("Number of Recommendations:", min_value=1, max_value=50, value=10)
|
161 |
|
162 |
# Get recommendations
|
@@ -164,8 +141,7 @@ elif app_selector == "Collaborative Recommender":
|
|
164 |
# Load the recommender
|
165 |
recommender = CollaborativeAnimeRecommender(anime_user_ratings)
|
166 |
if collaborative_method == "SVD Collaborative Filtering":
|
167 |
-
recommendations = recommender.get_svd_recommendations(user_id, n=n_recommendations, svd_model=svd_model)
|
168 |
-
# st.write(recommendations.head())
|
169 |
elif collaborative_method == "User-Based Collaborative Filtering":
|
170 |
recommendations = recommender.get_user_based_recommendations(user_id, n_recommendations=n_recommendations, knn_user_model=user_based_knn_model)
|
171 |
elif collaborative_method == "Anime-Based KNN Collaborative Filtering":
|
@@ -176,7 +152,7 @@ elif app_selector == "Collaborative Recommender":
|
|
176 |
|
177 |
if isinstance(recommendations, pd.DataFrame) and not recommendations.empty:
|
178 |
if len(recommendations) < n_recommendations:
|
179 |
-
st.warning(f"Only {len(recommendations)} recommendations available, fewer than the requested {n_recommendations}.")
|
180 |
st.write(f"Here are the Collaborative Recommendations:")
|
181 |
cols = st.columns(5)
|
182 |
for i, row in enumerate(recommendations.iterrows()):
|
@@ -213,7 +189,7 @@ elif app_selector == "Top Anime Recommender":
|
|
213 |
|
214 |
n_recommendations = st.slider("Number of Recommendations:", min_value=1, max_value=50, value=10)
|
215 |
|
216 |
-
if st.button("Get
|
217 |
# Load the popularity-based recommender
|
218 |
recommender = PopularityBasedFiltering(anime_data)
|
219 |
|
|
|
21 |
|
22 |
# Load models only once
|
23 |
if "models_loaded" not in st.session_state:
|
24 |
+
st.session_state.models_loaded = {}
|
|
|
|
|
|
|
|
|
25 |
# Load models
|
26 |
st.session_state.models_loaded["cosine_similarity_model"] = hf_hub_download(MODELS_FILEPATH, MODEL_TRAINER_COSINESIMILARITY_MODEL_NAME)
|
27 |
st.session_state.models_loaded["item_based_knn_model_path"] = hf_hub_download(MODELS_FILEPATH, MODEL_TRAINER_ITEM_KNN_TRAINED_MODEL_NAME)
|
|
|
44 |
anime_data = st.session_state.anime_data
|
45 |
anime_user_ratings = st.session_state.anime_user_ratings
|
46 |
|
47 |
+
# # Display dataset info
|
48 |
+
# st.write("Anime Data:")
|
49 |
+
# st.dataframe(anime_data.head())
|
50 |
|
51 |
+
# st.write("Anime User Ratings Data:")
|
52 |
+
# st.dataframe(anime_user_ratings.head())
|
53 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
# Access the models from session state
|
55 |
cosine_similarity_model_path = hf_hub_download(MODELS_FILEPATH, MODEL_TRAINER_COSINESIMILARITY_MODEL_NAME)
|
56 |
item_based_knn_model = st.session_state.models_loaded["item_based_knn_model"]
|
|
|
64 |
)
|
65 |
|
66 |
if app_selector == "Content-Based Recommender":
|
67 |
+
st.title("Content-Based Recommendation System")
|
68 |
try:
|
69 |
|
70 |
anime_list = anime_data["name"].tolist()
|
71 |
+
anime_name = st.selectbox("Pick an anime..unlock similar anime recommendations..", anime_list)
|
72 |
|
73 |
# Set number of recommendations
|
74 |
max_recommendations = min(len(anime_data), 100)
|
|
|
123 |
# Sidebar for choosing the collaborative filtering method
|
124 |
collaborative_method = st.sidebar.selectbox(
|
125 |
"Choose a collaborative filtering method:",
|
126 |
+
["Surprise Collaborative Filtering", "User-Based Collaborative Filtering", "Anime-Based KNN Collaborative Filtering"]
|
127 |
)
|
128 |
|
129 |
# User input
|
130 |
if collaborative_method == "SVD Collaborative Filtering" or collaborative_method == "User-Based Collaborative Filtering":
|
131 |
+
user_ids = anime_user_ratings['user_id'].unique()
|
132 |
+
user_id = st.selectbox("Choose a user, and we'll show you animes they'd recommend!", user_ids)
|
133 |
n_recommendations = st.slider("Number of Recommendations:", min_value=1, max_value=50, value=10)
|
134 |
elif collaborative_method == "Anime-Based KNN Collaborative Filtering":
|
135 |
+
anime_list = anime_user_ratings["name"].dropna().unique().tolist()
|
136 |
+
anime_name = st.selectbox("Pick an anime, and we'll suggest more titles you'll love", anime_list)
|
137 |
n_recommendations = st.slider("Number of Recommendations:", min_value=1, max_value=50, value=10)
|
138 |
|
139 |
# Get recommendations
|
|
|
141 |
# Load the recommender
|
142 |
recommender = CollaborativeAnimeRecommender(anime_user_ratings)
|
143 |
if collaborative_method == "SVD Collaborative Filtering":
|
144 |
+
recommendations = recommender.get_svd_recommendations(user_id, n=n_recommendations, svd_model=svd_model)
|
|
|
145 |
elif collaborative_method == "User-Based Collaborative Filtering":
|
146 |
recommendations = recommender.get_user_based_recommendations(user_id, n_recommendations=n_recommendations, knn_user_model=user_based_knn_model)
|
147 |
elif collaborative_method == "Anime-Based KNN Collaborative Filtering":
|
|
|
152 |
|
153 |
if isinstance(recommendations, pd.DataFrame) and not recommendations.empty:
|
154 |
if len(recommendations) < n_recommendations:
|
155 |
+
st.warning(f"Oops...Only {len(recommendations)} recommendations available, fewer than the requested {n_recommendations}.")
|
156 |
st.write(f"Here are the Collaborative Recommendations:")
|
157 |
cols = st.columns(5)
|
158 |
for i, row in enumerate(recommendations.iterrows()):
|
|
|
189 |
|
190 |
n_recommendations = st.slider("Number of Recommendations:", min_value=1, max_value=50, value=10)
|
191 |
|
192 |
+
if st.button("Get Recommendations"):
|
193 |
# Load the popularity-based recommender
|
194 |
recommender = PopularityBasedFiltering(anime_data)
|
195 |
|