Commit
·
63361d4
1
Parent(s):
b4f6ffc
Updated all files
Browse files- .gitignore +1 -1
- Dockerfile +42 -1
- README.md +120 -3
- app.py +217 -208
.gitignore
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
anime/
|
2 |
.env
|
3 |
Artifacts/
|
4 |
logs/
|
|
|
1 |
+
anime/
|
2 |
.env
|
3 |
Artifacts/
|
4 |
logs/
|
Dockerfile
CHANGED
@@ -1,6 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# Use the official Python image as a base
|
2 |
FROM python:3.10-slim-buster
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
# Set the working directory in the container
|
5 |
WORKDIR /app
|
6 |
|
@@ -8,10 +48,11 @@ WORKDIR /app
|
|
8 |
COPY . .
|
9 |
|
10 |
# Install required packages
|
|
|
11 |
RUN pip install -r requirements.txt
|
12 |
|
13 |
# Expose the port that Streamlit uses
|
14 |
EXPOSE 8501
|
15 |
|
16 |
# Run the Streamlit app
|
17 |
-
CMD ["streamlit", "run", "app.py", "--server.port=8501", "--server.address=0.0.0.0"]
|
|
|
1 |
+
# # Use the official Python image as a base
|
2 |
+
# FROM python:3.10-slim-buster
|
3 |
+
|
4 |
+
# # Set the working directory in the container
|
5 |
+
# WORKDIR /app
|
6 |
+
|
7 |
+
# # Copy the app files into the container
|
8 |
+
# COPY . .
|
9 |
+
|
10 |
+
# # Install required packages
|
11 |
+
# RUN pip install -r requirements.txt
|
12 |
+
|
13 |
+
# # Expose the port that Streamlit uses
|
14 |
+
# EXPOSE 8501
|
15 |
+
|
16 |
+
# # Run the Streamlit app
|
17 |
+
# CMD ["streamlit", "run", "app.py", "--server.port=8501", "--server.address=0.0.0.0"]
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
# Use the official Python image as a base
|
31 |
FROM python:3.10-slim-buster
|
32 |
|
33 |
+
# Install system dependencies required to build scikit-surprise
|
34 |
+
RUN apt-get update && apt-get install -y \
|
35 |
+
build-essential \
|
36 |
+
gcc \
|
37 |
+
python3-dev \
|
38 |
+
libxml2 \
|
39 |
+
libxmlsec1 \
|
40 |
+
libxslt1-dev \
|
41 |
+
libffi-dev \
|
42 |
+
&& apt-get clean
|
43 |
+
|
44 |
# Set the working directory in the container
|
45 |
WORKDIR /app
|
46 |
|
|
|
48 |
COPY . .
|
49 |
|
50 |
# Install required packages
|
51 |
+
RUN pip install --upgrade pip
|
52 |
RUN pip install -r requirements.txt
|
53 |
|
54 |
# Expose the port that Streamlit uses
|
55 |
EXPOSE 8501
|
56 |
|
57 |
# Run the Streamlit app
|
58 |
+
CMD ["streamlit", "run", "app.py", "--server.port=8501", "--server.address=0.0.0.0"]
|
README.md
CHANGED
@@ -8,8 +8,125 @@ sdk_version: 1.41.1
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
11 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
|
14 |
|
15 |
-
|
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
11 |
+
---
|
12 |
+
|
13 |
+
# Welcome to Anime Recommendation system
|
14 |
+
|
15 |
+
This is an **Anime Recommendation System** that combines multiple recommendation techniques such as **Collaborative Filtering**, **Content-Based Filtering**, and **Popularity-Based Filtering**. The system is designed to continuously ingest and transform data and is **dockerized** for easier deployment.
|
16 |
+
|
17 |
+
The system is hosted on **Hugging Face Spaces** and fetches datasets and pre-trained models from **Hugging Face Hub** to generate **personalized anime recommendations** based on user preferences and anime features.
|
18 |
+
|
19 |
+
## Tech Stacks 🛠️
|
20 |
+
|
21 |
+
- **Python**: Main programming language used for building recommendation algorithms and Streamlit app.
|
22 |
+
- **Docker**: Containerizes the application to ensure a consistent environment across different platforms.
|
23 |
+
- **Streamlit**: For building and deploying the web app that serves the recommendations.
|
24 |
+
- **Hugging Face Spaces**: Hosts the Streamlit-based recommendation system.
|
25 |
+
- **Hugging Face Datasets**: Stores and retrieves anime datasets for processing.
|
26 |
+
- **Hugging Face Models**: Hosts the pre-trained recommendation models for inference.
|
27 |
+
|
28 |
+
## Pipeline 🚀
|
29 |
+
|
30 |
+
The pipeline follows a structured sequence of steps to build an **Anime Recommendation System**, including data ingestion, transformation, and multiple recommendation models.
|
31 |
+
|
32 |
+
### 1. Data Ingestion 📥
|
33 |
+
- Initiates the **data ingestion process**, where anime data is loaded from Hugging Face datasets.
|
34 |
+
- The ingested data is saved as artifacts in a local folder for further processing.
|
35 |
+
|
36 |
+
### 2. Data Transformation 🔄
|
37 |
+
- Cleans, transforms, and processes the raw data into a structured format.
|
38 |
+
- Extracts important features required for **Content-Based Filtering** and prepares data for **Collaborative Filtering**.
|
39 |
+
|
40 |
+
### 3. Collaborative Filtering 🤝
|
41 |
+
- Implements **three collaborative filtering models** to recommend anime based on user preferences:
|
42 |
+
- **Singular Value Decomposition (SVD)**: Factorizes the user-item interaction matrix to make personalized recommendations.
|
43 |
+
- **Item-Based K-Nearest Neighbors (Item-KNN)**: Recommends anime similar to a given anime based on user ratings.
|
44 |
+
- **User-Based K-Nearest Neighbors (User-KNN)**: Suggests anime that users with similar preferences have liked.
|
45 |
+
- The chosen model is trained using **transformed data**, and the final trained model is stored as an artifact.
|
46 |
+
- Once trained, it can generate recommendations for users or anime titles.
|
47 |
+
|
48 |
+
### 4. Content-Based Filtering 🎭
|
49 |
+
- Uses extracted anime features like genres to train a **Content-Based Recommendation Model**.
|
50 |
+
- This model recommends anime similar to those a user has watched or liked.
|
51 |
+
|
52 |
+
### 5. Popularity-Based Filtering ⭐
|
53 |
+
This recommendation system ranks anime based on various **popularity metrics**, making it ideal for users who want to discover trending or highly-rated shows **without needing personalized preferences**.
|
54 |
+
|
55 |
+
The system applies different filters to sort anime based on:
|
56 |
+
|
57 |
+
- **Most Popular** 🎭: Anime ranked by **popularity score**, highlighting the most widely recognized titles.
|
58 |
+
- **Top Ranked** 🏆: Highest-rated anime, based on **official ranking metrics**.
|
59 |
+
- **Overall Top Rated** ⭐: Best-rated anime, sorted by **average user ratings**.
|
60 |
+
- **Most Favorited** ❤️: Anime with the highest number of **favorites**, indicating strong fan appreciation.
|
61 |
+
- **Highest Member Count** 👥: Anime with the largest **viewer base**, showing widespread appeal.
|
62 |
+
- **Popular Among Members** 🔥: Anime with a **high number of members and strong ratings**, making them community favorites.
|
63 |
+
- **Highest Average Rating** 🎖️: Shows that have the **best average rating** after handling missing values.
|
64 |
+
|
65 |
+
## Artifacts Storage 📂
|
66 |
+
|
67 |
+
All intermediate and final outputs, including processed datasets and trained models, are first saved locally in the **Artifacts** folder. These artifacts are then uploaded to **Hugging Face** for efficient storage and easy access.
|
68 |
+
|
69 |
+
When building the **Streamlit** app, these datasets and trained models are retrieved directly from **Hugging Face**, ensuring seamless integration and scalability.
|
70 |
+
|
71 |
+
- The datasets used in this project are available at:
|
72 |
+
- [Anime and User Ratings](https://www.kaggle.com/datasets/krishnaveniponna/anime-and-ratings-list-dataset-2023)
|
73 |
+
|
74 |
+
- You can find the Artifacts of trained models here:
|
75 |
+
- [Pre-trained Models](https://huggingface.co/krishnaveni76/anime-recommendation-models)
|
76 |
+
|
77 |
+
## 🚀 Deployment on Hugging Face Spaces
|
78 |
+
|
79 |
+
This project is deployed using **Hugging Face Spaces**, which provides a seamless way to host **Streamlit applications**. The application pulls the datasets and trained models from Hugging Face and runs inside a **Docker container**.
|
80 |
+
|
81 |
+
### Pre-requisites
|
82 |
+
- Docker
|
83 |
+
- Hugging Face (for datasets and trained models)
|
84 |
+
- Python 3.8+
|
85 |
+
- Hugging Face Spaces account
|
86 |
+
|
87 |
+
### Local step 🔧
|
88 |
+
1. **Clone the repository**
|
89 |
+
```bash
|
90 |
+
git clone https://huggingface.co/spaces/krishnaveni76/Anime-Recommendation-System
|
91 |
+
cd Anime-Recommendation-System
|
92 |
+
```
|
93 |
+
2. **Set Up a Virtual Environment**:
|
94 |
+
```bash
|
95 |
+
# For macOS and Linux:
|
96 |
+
python3 -m venv venv
|
97 |
+
# For Windows:
|
98 |
+
python -m venv venv
|
99 |
+
```
|
100 |
+
3. **Activate the Virtual Environment**:
|
101 |
+
```bash
|
102 |
+
# For macOS and Linux:
|
103 |
+
source venv/bin/activate
|
104 |
+
# For Windows:
|
105 |
+
.\venv\Scripts\activate
|
106 |
+
```
|
107 |
+
4. **Install Required Dependencies**:
|
108 |
+
```bash
|
109 |
+
pip install -r requirements.txt
|
110 |
+
```
|
111 |
+
|
112 |
+
### Running with Docker 🚀
|
113 |
+
To run the application inside a Docker container, follow these steps:
|
114 |
+
|
115 |
+
1. Build the Docker Image
|
116 |
+
```bash
|
117 |
+
docker build -t anime-recommendation-system .
|
118 |
+
```
|
119 |
+
2. Run the Docker Container
|
120 |
+
```bash
|
121 |
+
docker run -p 8501:8501 anime-recommendation-system
|
122 |
+
```
|
123 |
+
This will start the Streamlit application, which can be accessed at `http://localhost:8501`.
|
124 |
+
|
125 |
+
### Contact 📫
|
126 |
+
For any questions, suggestions, or collaboration opportunities, feel free to reach out:
|
127 |
+
|
128 |
+
📧Email: [email protected]
|
129 |
|
130 |
+
🌐 LinkedIn: [Krishnaveni Ponna](https://www.linkedin.com/in/krishnaveni-ponna-28ab93239)
|
131 |
|
132 |
+
🐦 Twitter: [@Krishnaveni076](https://x.com/Krishnaveni076)
|
app.py
CHANGED
@@ -8,226 +8,235 @@ from anime_recommender.constant import *
|
|
8 |
from huggingface_hub import hf_hub_download
|
9 |
from datasets import load_dataset
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
#
|
19 |
-
st.
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
# Load
|
32 |
-
|
33 |
-
st.session_state.models_loaded
|
34 |
-
|
35 |
-
|
36 |
-
st.session_state.models_loaded["
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
print("Models loaded successfully!")
|
42 |
-
|
43 |
-
#
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
#
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
if app_selector == "Content-Based Recommender":
|
67 |
-
st.title("Content-Based Recommendation System")
|
68 |
-
try:
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
""
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
|
|
103 |
cols = st.columns(5)
|
104 |
for i, row in enumerate(recommendations.iterrows()):
|
105 |
col = cols[i % 5]
|
106 |
with col:
|
107 |
st.image(row[1]['Image URL'], use_container_width=True)
|
108 |
st.markdown(
|
109 |
-
f"<div class='anime-title'>{row[1]['Anime
|
110 |
unsafe_allow_html=True,
|
111 |
-
)
|
112 |
-
st.caption(f"Genres: {row[1]['Genres']} | Rating: {row[1]['Rating']}")
|
113 |
-
except Exception as e:
|
114 |
-
st.error(f"Unexpected error: {str(e)}")
|
115 |
-
|
116 |
-
except Exception as e:
|
117 |
-
st.error(f"Unexpected error: {str(e)}")
|
118 |
-
|
119 |
-
elif app_selector == "Collaborative Recommender":
|
120 |
-
st.title("Collaborative Recommender System")
|
121 |
-
|
122 |
-
try:
|
123 |
-
# Sidebar for choosing the collaborative filtering method
|
124 |
-
collaborative_method = st.sidebar.selectbox(
|
125 |
-
"Choose a collaborative filtering method:",
|
126 |
-
["SVD Collaborative Filtering", "User-Based Collaborative Filtering", "Anime-Based KNN Collaborative Filtering"]
|
127 |
-
)
|
128 |
-
|
129 |
-
# User input
|
130 |
-
if collaborative_method == "SVD Collaborative Filtering" or collaborative_method == "User-Based Collaborative Filtering":
|
131 |
-
user_ids = anime_user_ratings['user_id'].unique()
|
132 |
-
user_id = st.selectbox("Choose a user, and we'll show you animes they'd recommend", user_ids)
|
133 |
-
n_recommendations = st.slider("Number of Recommendations:", min_value=1, max_value=50, value=10)
|
134 |
-
elif collaborative_method == "Anime-Based KNN Collaborative Filtering":
|
135 |
-
anime_list = anime_user_ratings["name"].dropna().unique().tolist()
|
136 |
-
anime_name = st.selectbox("Pick an anime, and we'll suggest more titles you'll love", anime_list)
|
137 |
-
n_recommendations = st.slider("Number of Recommendations:", min_value=1, max_value=50, value=10)
|
138 |
-
|
139 |
-
# Get recommendations
|
140 |
-
if st.button("Get Recommendations"):
|
141 |
-
# Load the recommender
|
142 |
-
recommender = CollaborativeAnimeRecommender(anime_user_ratings)
|
143 |
-
if collaborative_method == "SVD Collaborative Filtering":
|
144 |
-
recommendations = recommender.get_svd_recommendations(user_id, n=n_recommendations, svd_model=svd_model)
|
145 |
-
elif collaborative_method == "User-Based Collaborative Filtering":
|
146 |
-
recommendations = recommender.get_user_based_recommendations(user_id, n_recommendations=n_recommendations, knn_user_model=user_based_knn_model)
|
147 |
-
elif collaborative_method == "Anime-Based KNN Collaborative Filtering":
|
148 |
-
if anime_name:
|
149 |
-
recommendations = recommender.get_item_based_recommendations(anime_name, n_recommendations=n_recommendations, knn_item_model=item_based_knn_model)
|
150 |
else:
|
151 |
-
st.error("
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
cols = st.columns(5)
|
158 |
-
for i, row in enumerate(recommendations.iterrows()):
|
159 |
-
col = cols[i % 5]
|
160 |
-
with col:
|
161 |
-
st.image(row[1]['Image URL'], use_container_width=True)
|
162 |
-
st.markdown(
|
163 |
-
f"<div class='anime-title'>{row[1]['Anime Name']}</div>",
|
164 |
-
unsafe_allow_html=True,
|
165 |
-
)
|
166 |
-
st.caption(f"Genres: {row[1]['Genres']} | Rating: {row[1]['Rating']}")
|
167 |
-
else:
|
168 |
-
st.error("No recommendations found.")
|
169 |
-
except Exception as e:
|
170 |
-
st.error(f"An error occurred: {e}")
|
171 |
-
|
172 |
-
|
173 |
-
elif app_selector == "Top Anime Recommender":
|
174 |
-
st.title("Top Anime Recommender System")
|
175 |
-
|
176 |
-
try:
|
177 |
-
# Sidebar for choosing the popularity-based filtering method
|
178 |
-
popularity_method = st.sidebar.selectbox(
|
179 |
-
"Choose a Popularity-Based Filtering method:",
|
180 |
-
[
|
181 |
-
"Popular Animes",
|
182 |
-
"Top Ranked Animes",
|
183 |
-
"Overall Top Rated Animes",
|
184 |
-
"Favorite Animes",
|
185 |
-
"Top Animes by Members",
|
186 |
-
"Popular Anime Among Members",
|
187 |
-
"Top Average Rated Animes",
|
188 |
-
]
|
189 |
-
)
|
190 |
-
|
191 |
-
n_recommendations = st.slider("Number of Recommendations:", min_value=1, max_value=500, value=10)
|
192 |
|
193 |
-
|
194 |
-
|
195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
|
197 |
-
|
198 |
-
if popularity_method == "Popular Animes":
|
199 |
-
recommendations = recommender.popular_animes(n=n_recommendations)
|
200 |
-
elif popularity_method == "Top Ranked Animes":
|
201 |
-
recommendations = recommender.top_ranked_animes(n=n_recommendations)
|
202 |
-
elif popularity_method == "Overall Top Rated Animes":
|
203 |
-
recommendations = recommender.overall_top_rated_animes(n=n_recommendations)
|
204 |
-
elif popularity_method == "Favorite Animes":
|
205 |
-
recommendations = recommender.favorite_animes(n=n_recommendations)
|
206 |
-
elif popularity_method == "Top Animes by Members":
|
207 |
-
recommendations = recommender.top_animes_members(n=n_recommendations)
|
208 |
-
elif popularity_method == "Popular Anime Among Members":
|
209 |
-
recommendations = recommender.popular_anime_among_members(n=n_recommendations)
|
210 |
-
elif popularity_method == "Top Average Rated Animes":
|
211 |
-
recommendations = recommender.top_avg_rated(n=n_recommendations)
|
212 |
-
else:
|
213 |
-
st.error("Invalid selection. Please choose a valid method.")
|
214 |
-
recommendations = None
|
215 |
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
|
|
|
|
|
|
8 |
from huggingface_hub import hf_hub_download
|
9 |
from datasets import load_dataset
|
10 |
|
11 |
+
def run_app():
|
12 |
+
"""
|
13 |
+
Initializes the Streamlit app, loads necessary datasets and models,
|
14 |
+
and provides a UI for anime recommendations based on three methods:
|
15 |
+
Content-Based, Collaborative, and Popularity-Based Filtering. 🎬🎮
|
16 |
+
"""
|
17 |
+
|
18 |
+
# Set page configuration
|
19 |
+
st.set_page_config(page_title="Anime Recommendation System", layout="wide")
|
20 |
+
|
21 |
+
# Load datasets if not present in session state
|
22 |
+
if "anime_data" not in st.session_state or "anime_user_ratings" not in st.session_state:
|
23 |
+
# Load datasets from Hugging Face (assuming no splits)
|
24 |
+
animedataset = load_dataset(ANIME_FILE_PATH, split=None)
|
25 |
+
mergeddataset = load_dataset(ANIMEUSERRATINGS_FILE_PATH, split=None)
|
26 |
+
|
27 |
+
# Convert the dataset to Pandas DataFrame
|
28 |
+
st.session_state.anime_data = pd.DataFrame(animedataset["train"])
|
29 |
+
st.session_state.anime_user_ratings = pd.DataFrame(mergeddataset["train"])
|
30 |
+
|
31 |
+
# Load models only once
|
32 |
+
if "models_loaded" not in st.session_state:
|
33 |
+
st.session_state.models_loaded = {}
|
34 |
+
# Load models
|
35 |
+
st.session_state.models_loaded["cosine_similarity_model"] = hf_hub_download(MODELS_FILEPATH, MODEL_TRAINER_COSINESIMILARITY_MODEL_NAME)
|
36 |
+
st.session_state.models_loaded["item_based_knn_model_path"] = hf_hub_download(MODELS_FILEPATH, MODEL_TRAINER_ITEM_KNN_TRAINED_MODEL_NAME)
|
37 |
+
st.session_state.models_loaded["user_based_knn_model_path"] = hf_hub_download(MODELS_FILEPATH, MODEL_TRAINER_USER_KNN_TRAINED_MODEL_NAME)
|
38 |
+
st.session_state.models_loaded["svd_model_path"] = hf_hub_download(MODELS_FILEPATH, MODEL_TRAINER_SVD_TRAINED_MODEL_NAME)
|
39 |
+
|
40 |
+
# Load the models using joblib
|
41 |
+
with open(st.session_state.models_loaded["item_based_knn_model_path"], "rb") as f:
|
42 |
+
st.session_state.models_loaded["item_based_knn_model"] = joblib.load(f)
|
43 |
+
|
44 |
+
with open(st.session_state.models_loaded["user_based_knn_model_path"], "rb") as f:
|
45 |
+
st.session_state.models_loaded["user_based_knn_model"] = joblib.load(f)
|
46 |
+
|
47 |
+
with open(st.session_state.models_loaded["svd_model_path"], "rb") as f:
|
48 |
+
st.session_state.models_loaded["svd_model"] = joblib.load(f)
|
49 |
+
|
50 |
+
print("Models loaded successfully!")
|
51 |
+
|
52 |
+
# Access the data from session state
|
53 |
+
anime_data = st.session_state.anime_data
|
54 |
+
anime_user_ratings = st.session_state.anime_user_ratings
|
55 |
+
|
56 |
+
# # Display dataset info
|
57 |
+
# st.write("Anime Data:")
|
58 |
+
# st.dataframe(anime_data.head())
|
59 |
+
|
60 |
+
# st.write("Anime User Ratings Data:")
|
61 |
+
# st.dataframe(anime_user_ratings.head())
|
62 |
+
|
63 |
+
# Access the models from session state
|
64 |
+
cosine_similarity_model_path = hf_hub_download(MODELS_FILEPATH, MODEL_TRAINER_COSINESIMILARITY_MODEL_NAME)
|
65 |
+
item_based_knn_model = st.session_state.models_loaded["item_based_knn_model"]
|
66 |
+
user_based_knn_model = st.session_state.models_loaded["user_based_knn_model"]
|
67 |
+
svd_model = st.session_state.models_loaded["svd_model"]
|
68 |
print("Models loaded successfully!")
|
69 |
+
|
70 |
+
# Streamlit UI
|
71 |
+
app_selector = st.sidebar.radio(
|
72 |
+
"Select App", ("Content-Based Recommender", "Collaborative Recommender", "Top Anime Recommender")
|
73 |
+
)
|
74 |
+
|
75 |
+
# Content-Based Recommender App
|
76 |
+
if app_selector == "Content-Based Recommender":
|
77 |
+
st.title("Content-Based Recommendation System")
|
78 |
+
try:
|
79 |
+
|
80 |
+
anime_list = anime_data["name"].tolist()
|
81 |
+
anime_name = st.selectbox("Pick an anime..unlock similar anime recommendations..", anime_list)
|
82 |
+
|
83 |
+
# Set number of recommendations
|
84 |
+
max_recommendations = min(len(anime_data), 100)
|
85 |
+
n_recommendations = st.slider("Number of Recommendations", 1, max_recommendations, 10)
|
86 |
+
|
87 |
+
# Inject custom CSS for anime name font size
|
88 |
+
st.markdown(
|
89 |
+
"""
|
90 |
+
<style>
|
91 |
+
.anime-title {
|
92 |
+
font-size: 14px !important;
|
93 |
+
font-weight: bold;
|
94 |
+
text-align: center;
|
95 |
+
margin-top: 5px;
|
96 |
+
}
|
97 |
+
</style>
|
98 |
+
""",
|
99 |
+
unsafe_allow_html=True,
|
100 |
+
)
|
101 |
+
# Get Recommendations
|
102 |
+
if st.button("Get Recommendations"):
|
103 |
+
try:
|
104 |
+
recommender = ContentBasedRecommender(anime_data)
|
105 |
+
recommendations = recommender.get_rec_cosine(anime_name, n_recommendations=n_recommendations,model_path=cosine_similarity_model_path)
|
106 |
+
|
107 |
+
if isinstance(recommendations, str):
|
108 |
+
st.warning(recommendations)
|
109 |
+
elif recommendations.empty:
|
110 |
+
st.warning("No recommendations found.🧐")
|
111 |
+
else:
|
112 |
+
st.write(f"Here are the Content-based Recommendations for {anime_name}:")
|
113 |
+
cols = st.columns(5)
|
114 |
+
for i, row in enumerate(recommendations.iterrows()):
|
115 |
+
col = cols[i % 5]
|
116 |
+
with col:
|
117 |
+
st.image(row[1]['Image URL'], use_container_width=True)
|
118 |
+
st.markdown(
|
119 |
+
f"<div class='anime-title'>{row[1]['Anime name']}</div>",
|
120 |
+
unsafe_allow_html=True,
|
121 |
+
)
|
122 |
+
st.caption(f"Genres: {row[1]['Genres']} | Rating: {row[1]['Rating']}")
|
123 |
+
except Exception as e:
|
124 |
+
st.error(f"Unexpected error: {str(e)}")
|
125 |
|
126 |
+
except Exception as e:
|
127 |
+
st.error(f"Unexpected error: {str(e)}")
|
128 |
+
|
129 |
+
elif app_selector == "Collaborative Recommender":
|
130 |
+
st.title("Collaborative Recommender System 🧑🤝🧑💬")
|
|
|
|
|
|
|
131 |
|
132 |
+
try:
|
133 |
+
# Sidebar for choosing the collaborative filtering method
|
134 |
+
collaborative_method = st.sidebar.selectbox(
|
135 |
+
"Choose a collaborative filtering method:",
|
136 |
+
["SVD Collaborative Filtering", "User-Based Collaborative Filtering", "Anime-Based KNN Collaborative Filtering"]
|
137 |
+
)
|
138 |
+
|
139 |
+
# User input
|
140 |
+
if collaborative_method == "SVD Collaborative Filtering" or collaborative_method == "User-Based Collaborative Filtering":
|
141 |
+
user_ids = anime_user_ratings['user_id'].unique()
|
142 |
+
user_id = st.selectbox("Choose a user, and we'll show you animes they'd recommend", user_ids)
|
143 |
+
n_recommendations = st.slider("Number of Recommendations:", min_value=1, max_value=50, value=10)
|
144 |
+
elif collaborative_method == "Anime-Based KNN Collaborative Filtering":
|
145 |
+
anime_list = anime_user_ratings["name"].dropna().unique().tolist()
|
146 |
+
anime_name = st.selectbox("Pick an anime, and we'll suggest more titles you'll love", anime_list)
|
147 |
+
n_recommendations = st.slider("Number of Recommendations:", min_value=1, max_value=50, value=10)
|
148 |
+
|
149 |
+
# Get recommendations
|
150 |
+
if st.button("Get Recommendations"):
|
151 |
+
# Load the recommender
|
152 |
+
recommender = CollaborativeAnimeRecommender(anime_user_ratings)
|
153 |
+
if collaborative_method == "SVD Collaborative Filtering":
|
154 |
+
recommendations = recommender.get_svd_recommendations(user_id, n=n_recommendations, svd_model=svd_model)
|
155 |
+
elif collaborative_method == "User-Based Collaborative Filtering":
|
156 |
+
recommendations = recommender.get_user_based_recommendations(user_id, n_recommendations=n_recommendations, knn_user_model=user_based_knn_model)
|
157 |
+
elif collaborative_method == "Anime-Based KNN Collaborative Filtering":
|
158 |
+
if anime_name:
|
159 |
+
recommendations = recommender.get_item_based_recommendations(anime_name, n_recommendations=n_recommendations, knn_item_model=item_based_knn_model)
|
160 |
+
else:
|
161 |
+
st.error("Invalid Anime Name. Please enter a valid anime title.")
|
162 |
+
|
163 |
+
if isinstance(recommendations, pd.DataFrame) and not recommendations.empty:
|
164 |
+
if len(recommendations) < n_recommendations:
|
165 |
+
st.warning(f"Oops...Only {len(recommendations)} recommendations available, fewer than the requested {n_recommendations}.")
|
166 |
+
st.write(f"Here are the {collaborative_method} Recommendations:")
|
167 |
cols = st.columns(5)
|
168 |
for i, row in enumerate(recommendations.iterrows()):
|
169 |
col = cols[i % 5]
|
170 |
with col:
|
171 |
st.image(row[1]['Image URL'], use_container_width=True)
|
172 |
st.markdown(
|
173 |
+
f"<div class='anime-title'>{row[1]['Anime Name']}</div>",
|
174 |
unsafe_allow_html=True,
|
175 |
+
)
|
176 |
+
st.caption(f"Genres: {row[1]['Genres']} | Rating: {row[1]['Rating']}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
else:
|
178 |
+
st.error("No recommendations found.")
|
179 |
+
except Exception as e:
|
180 |
+
st.error(f"An error occurred: {e}")
|
181 |
+
|
182 |
+
elif app_selector == "Top Anime Recommender":
|
183 |
+
st.title("Top Anime Recommender System 🌟🔥")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
+
try:
|
186 |
+
popularity_method = st.sidebar.selectbox(
|
187 |
+
"Choose a Popularity-Based Filtering method:",
|
188 |
+
[
|
189 |
+
"Popular Animes",
|
190 |
+
"Top Ranked Animes",
|
191 |
+
"Overall Top Rated Animes",
|
192 |
+
"Favorite Animes",
|
193 |
+
"Top Animes by Members",
|
194 |
+
"Popular Anime Among Members",
|
195 |
+
"Top Average Rated Animes",
|
196 |
+
]
|
197 |
+
)
|
198 |
|
199 |
+
n_recommendations = st.slider("Number of Recommendations:", min_value=1, max_value=500 , value=10)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
|
201 |
+
if st.button("Get Recommendations"):
|
202 |
+
recommender = PopularityBasedFiltering(anime_data)
|
203 |
+
|
204 |
+
# Get recommendations based on selected method
|
205 |
+
if popularity_method == "Popular Animes":
|
206 |
+
recommendations = recommender.popular_animes(n=n_recommendations)
|
207 |
+
elif popularity_method == "Top Ranked Animes":
|
208 |
+
recommendations = recommender.top_ranked_animes(n=n_recommendations)
|
209 |
+
elif popularity_method == "Overall Top Rated Animes":
|
210 |
+
recommendations = recommender.overall_top_rated_animes(n=n_recommendations)
|
211 |
+
elif popularity_method == "Favorite Animes":
|
212 |
+
recommendations = recommender.favorite_animes(n=n_recommendations)
|
213 |
+
elif popularity_method == "Top Animes by Members":
|
214 |
+
recommendations = recommender.top_animes_members(n=n_recommendations)
|
215 |
+
elif popularity_method == "Popular Anime Among Members":
|
216 |
+
recommendations = recommender.popular_anime_among_members(n=n_recommendations)
|
217 |
+
elif popularity_method == "Top Average Rated Animes":
|
218 |
+
recommendations = recommender.top_avg_rated(n=n_recommendations)
|
219 |
+
else:
|
220 |
+
st.error("Invalid selection. Please choose a valid method.")
|
221 |
+
recommendations = None
|
222 |
+
|
223 |
+
# Display recommendations
|
224 |
+
if isinstance(recommendations, pd.DataFrame) and not recommendations.empty:
|
225 |
+
st.write(f" Here are the Recommendations:")
|
226 |
+
cols = st.columns(5)
|
227 |
+
for i, row in recommendations.iterrows():
|
228 |
+
col = cols[i % 5]
|
229 |
+
with col:
|
230 |
+
st.image(row['Image URL'], use_container_width=True)
|
231 |
+
st.markdown(
|
232 |
+
f"<div class='anime-title'>{row['Anime name']}</div>",
|
233 |
+
unsafe_allow_html=True,
|
234 |
+
)
|
235 |
+
st.caption(f"Genres: {row['Genres']} | Rating: {row['Rating']}")
|
236 |
+
else:
|
237 |
+
st.error("No recommendations found.")
|
238 |
+
except Exception as e:
|
239 |
+
st.error(f"An error occurred: {e}")
|
240 |
|
241 |
+
if __name__ == "__main__":
|
242 |
+
run_app()
|