Update app.py
Browse files
app.py
CHANGED
|
@@ -3,23 +3,32 @@ import numpy as np
|
|
| 3 |
from tensorflow.keras.models import load_model
|
| 4 |
from PIL import Image
|
| 5 |
import requests
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
# Cache the
|
| 8 |
@st.cache_resource
|
| 9 |
-
def
|
| 10 |
-
# Download the model from Hugging Face
|
| 11 |
url = "https://huggingface.co/krishnamishra8848/Devanagari_Character_Recognition/resolve/main/saved_model.keras"
|
| 12 |
response = requests.get(url)
|
| 13 |
with open("saved_model.keras", "wb") as f:
|
| 14 |
f.write(response.content)
|
| 15 |
-
|
| 16 |
-
model = load_model("saved_model.keras")
|
| 17 |
-
return model
|
| 18 |
|
| 19 |
-
#
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
-
# Nepali
|
| 23 |
label_mapping = [
|
| 24 |
"क", "ख", "ग", "घ", "ङ", "च", "छ", "ज", "झ", "ञ",
|
| 25 |
"ट", "ठ", "ड", "ढ", "ण", "त", "थ", "द", "ध", "न",
|
|
@@ -29,27 +38,48 @@ label_mapping = [
|
|
| 29 |
]
|
| 30 |
|
| 31 |
# Streamlit App
|
| 32 |
-
st.title("
|
| 33 |
-
st.write("Upload an image
|
| 34 |
|
| 35 |
-
# File uploader
|
| 36 |
uploaded_file = st.file_uploader("Choose an image file", type=["jpg", "jpeg", "png"])
|
| 37 |
|
| 38 |
if uploaded_file is not None:
|
| 39 |
try:
|
| 40 |
-
#
|
| 41 |
-
img = Image.open(uploaded_file).convert("
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
#
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
except Exception as e:
|
| 55 |
st.error(f"An error occurred: {e}")
|
|
|
|
| 3 |
from tensorflow.keras.models import load_model
|
| 4 |
from PIL import Image
|
| 5 |
import requests
|
| 6 |
+
from ultralytics import YOLO
|
| 7 |
+
import cv2
|
| 8 |
|
| 9 |
+
# Cache the character recognition model
|
| 10 |
@st.cache_resource
|
| 11 |
+
def load_character_model():
|
|
|
|
| 12 |
url = "https://huggingface.co/krishnamishra8848/Devanagari_Character_Recognition/resolve/main/saved_model.keras"
|
| 13 |
response = requests.get(url)
|
| 14 |
with open("saved_model.keras", "wb") as f:
|
| 15 |
f.write(response.content)
|
| 16 |
+
return load_model("saved_model.keras")
|
|
|
|
|
|
|
| 17 |
|
| 18 |
+
# Cache the YOLO detection model
|
| 19 |
+
@st.cache_resource
|
| 20 |
+
def load_detection_model():
|
| 21 |
+
weights_path = "https://huggingface.co/krishnamishra8848/Nepal-Vehicle-License-Plate-Detection/resolve/main/last.pt"
|
| 22 |
+
response = requests.get(weights_path)
|
| 23 |
+
with open("last.pt", "wb") as f:
|
| 24 |
+
f.write(response.content)
|
| 25 |
+
return YOLO("last.pt")
|
| 26 |
+
|
| 27 |
+
# Load models
|
| 28 |
+
character_model = load_character_model()
|
| 29 |
+
detection_model = load_detection_model()
|
| 30 |
|
| 31 |
+
# Nepali character mapping
|
| 32 |
label_mapping = [
|
| 33 |
"क", "ख", "ग", "घ", "ङ", "च", "छ", "ज", "झ", "ञ",
|
| 34 |
"ट", "ठ", "ड", "ढ", "ण", "त", "थ", "द", "ध", "न",
|
|
|
|
| 38 |
]
|
| 39 |
|
| 40 |
# Streamlit App
|
| 41 |
+
st.title("Bounding Box Text Recognition")
|
| 42 |
+
st.write("Upload an image containing Devanagari text, and the model will detect bounding boxes and predict text.")
|
| 43 |
|
| 44 |
+
# File uploader
|
| 45 |
uploaded_file = st.file_uploader("Choose an image file", type=["jpg", "jpeg", "png"])
|
| 46 |
|
| 47 |
if uploaded_file is not None:
|
| 48 |
try:
|
| 49 |
+
# Load and preprocess the image
|
| 50 |
+
img = Image.open(uploaded_file).convert("RGB")
|
| 51 |
+
img_array = np.array(img)
|
| 52 |
+
img_bgr = cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR) # Convert to OpenCV format
|
| 53 |
+
|
| 54 |
+
# Detect bounding boxes with YOLO
|
| 55 |
+
results = detection_model(img_bgr)
|
| 56 |
+
|
| 57 |
+
# Initialize recognized text
|
| 58 |
+
recognized_text = ""
|
| 59 |
+
|
| 60 |
+
# Iterate through detected bounding boxes
|
| 61 |
+
for result in results:
|
| 62 |
+
if hasattr(result, 'boxes') and result.boxes is not None:
|
| 63 |
+
for box in result.boxes.xyxy:
|
| 64 |
+
x1, y1, x2, y2 = map(int, box) # Extract bounding box coordinates
|
| 65 |
+
cropped_img = img_bgr[y1:y2, x1:x2] # Crop the detected region
|
| 66 |
+
|
| 67 |
+
# Preprocess the cropped image
|
| 68 |
+
cropped_resized = cv2.resize(cropped_img, (32, 32), interpolation=cv2.INTER_AREA)
|
| 69 |
+
cropped_gray = cv2.cvtColor(cropped_resized, cv2.COLOR_BGR2GRAY)
|
| 70 |
+
cropped_normalized = cropped_gray.astype("float32") / 255.0
|
| 71 |
+
cropped_input = cropped_normalized.reshape(1, 32, 32, 1)
|
| 72 |
+
|
| 73 |
+
# Predict text for the cropped region
|
| 74 |
+
prediction = character_model.predict(cropped_input)
|
| 75 |
+
predicted_index = np.argmax(prediction)
|
| 76 |
+
predicted_character = label_mapping[predicted_index]
|
| 77 |
+
|
| 78 |
+
# Append to the recognized text
|
| 79 |
+
recognized_text += predicted_character
|
| 80 |
+
|
| 81 |
+
# Display the recognized text
|
| 82 |
+
st.success(f"Recognized Text: {recognized_text}")
|
| 83 |
|
| 84 |
except Exception as e:
|
| 85 |
st.error(f"An error occurred: {e}")
|