krishnamishra8848 commited on
Commit
1f4a388
·
verified ·
1 Parent(s): cce1fd0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -17
app.py CHANGED
@@ -5,8 +5,6 @@ import cv2
5
  import numpy as np
6
  from PIL import Image
7
  from tensorflow.keras.models import load_model
8
- import tempfile
9
- import os
10
 
11
  # Title for the Streamlit App
12
  st.title("Nepal Vehicle License Plate and Character Recognition")
@@ -95,32 +93,31 @@ if uploaded_file is not None:
95
  # Load image
96
  image = Image.open(uploaded_file)
97
 
98
- # Detect license plates and characters
99
  with st.spinner("Processing image..."):
100
  cropped_plates, detected_image = detect_and_crop_license_plate(image)
101
 
102
- # Show the image with detected license plates
103
- st.image(cv2.cvtColor(detected_image, cv2.COLOR_BGR2RGB), caption="Detected License Plates", use_container_width=True)
104
-
105
  if cropped_plates:
 
106
  st.write(f"Detected {len(cropped_plates)} license plate(s).")
107
- for idx, cropped_image in enumerate(cropped_plates, 1):
108
- st.write(f"Processing License Plate {idx}:")
109
 
110
- # Detect and crop characters
111
- character_crops = detect_and_crop_characters(cropped_image)
 
112
 
113
  if character_crops:
114
- # Recognize characters
115
  recognized_characters = recognize_characters(character_crops)
116
-
117
- # Show each cropped character and prediction
118
- for i, char_crop in enumerate(character_crops):
119
- st.image(cv2.cvtColor(char_crop, cv2.COLOR_BGR2RGB), caption=f"Character {i+1}")
120
- st.write(f"Predicted Character: {recognized_characters[i]}")
121
  else:
122
  st.write("No characters detected in this license plate.")
123
  else:
124
- st.write("No license plates detected.")
 
 
 
 
 
 
 
125
 
126
  st.success("Processing complete!")
 
5
  import numpy as np
6
  from PIL import Image
7
  from tensorflow.keras.models import load_model
 
 
8
 
9
  # Title for the Streamlit App
10
  st.title("Nepal Vehicle License Plate and Character Recognition")
 
93
  # Load image
94
  image = Image.open(uploaded_file)
95
 
96
+ # Detect license plates
97
  with st.spinner("Processing image..."):
98
  cropped_plates, detected_image = detect_and_crop_license_plate(image)
99
 
 
 
 
100
  if cropped_plates:
101
+ st.image(cv2.cvtColor(detected_image, cv2.COLOR_BGR2RGB), caption="Detected License Plates", use_container_width=True)
102
  st.write(f"Detected {len(cropped_plates)} license plate(s).")
 
 
103
 
104
+ for idx, cropped_plate in enumerate(cropped_plates, 1):
105
+ st.write(f"Processing License Plate {idx}:")
106
+ character_crops = detect_and_crop_characters(cropped_plate)
107
 
108
  if character_crops:
 
109
  recognized_characters = recognize_characters(character_crops)
110
+ st.write("Recognized Characters:", "".join(recognized_characters))
 
 
 
 
111
  else:
112
  st.write("No characters detected in this license plate.")
113
  else:
114
+ st.write("No license plates detected. Running character detection on the full image.")
115
+ character_crops = detect_and_crop_characters(cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR))
116
+
117
+ if character_crops:
118
+ recognized_characters = recognize_characters(character_crops)
119
+ st.write("Recognized Characters:", "".join(recognized_characters))
120
+ else:
121
+ st.write("No characters detected in the full image.")
122
 
123
  st.success("Processing complete!")