Update app.py
Browse files
app.py
CHANGED
@@ -5,8 +5,6 @@ import cv2
|
|
5 |
import numpy as np
|
6 |
from PIL import Image
|
7 |
from tensorflow.keras.models import load_model
|
8 |
-
import tempfile
|
9 |
-
import os
|
10 |
|
11 |
# Title for the Streamlit App
|
12 |
st.title("Nepal Vehicle License Plate and Character Recognition")
|
@@ -95,32 +93,31 @@ if uploaded_file is not None:
|
|
95 |
# Load image
|
96 |
image = Image.open(uploaded_file)
|
97 |
|
98 |
-
# Detect license plates
|
99 |
with st.spinner("Processing image..."):
|
100 |
cropped_plates, detected_image = detect_and_crop_license_plate(image)
|
101 |
|
102 |
-
# Show the image with detected license plates
|
103 |
-
st.image(cv2.cvtColor(detected_image, cv2.COLOR_BGR2RGB), caption="Detected License Plates", use_container_width=True)
|
104 |
-
|
105 |
if cropped_plates:
|
|
|
106 |
st.write(f"Detected {len(cropped_plates)} license plate(s).")
|
107 |
-
for idx, cropped_image in enumerate(cropped_plates, 1):
|
108 |
-
st.write(f"Processing License Plate {idx}:")
|
109 |
|
110 |
-
|
111 |
-
|
|
|
112 |
|
113 |
if character_crops:
|
114 |
-
# Recognize characters
|
115 |
recognized_characters = recognize_characters(character_crops)
|
116 |
-
|
117 |
-
# Show each cropped character and prediction
|
118 |
-
for i, char_crop in enumerate(character_crops):
|
119 |
-
st.image(cv2.cvtColor(char_crop, cv2.COLOR_BGR2RGB), caption=f"Character {i+1}")
|
120 |
-
st.write(f"Predicted Character: {recognized_characters[i]}")
|
121 |
else:
|
122 |
st.write("No characters detected in this license plate.")
|
123 |
else:
|
124 |
-
st.write("No license plates detected.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
st.success("Processing complete!")
|
|
|
5 |
import numpy as np
|
6 |
from PIL import Image
|
7 |
from tensorflow.keras.models import load_model
|
|
|
|
|
8 |
|
9 |
# Title for the Streamlit App
|
10 |
st.title("Nepal Vehicle License Plate and Character Recognition")
|
|
|
93 |
# Load image
|
94 |
image = Image.open(uploaded_file)
|
95 |
|
96 |
+
# Detect license plates
|
97 |
with st.spinner("Processing image..."):
|
98 |
cropped_plates, detected_image = detect_and_crop_license_plate(image)
|
99 |
|
|
|
|
|
|
|
100 |
if cropped_plates:
|
101 |
+
st.image(cv2.cvtColor(detected_image, cv2.COLOR_BGR2RGB), caption="Detected License Plates", use_container_width=True)
|
102 |
st.write(f"Detected {len(cropped_plates)} license plate(s).")
|
|
|
|
|
103 |
|
104 |
+
for idx, cropped_plate in enumerate(cropped_plates, 1):
|
105 |
+
st.write(f"Processing License Plate {idx}:")
|
106 |
+
character_crops = detect_and_crop_characters(cropped_plate)
|
107 |
|
108 |
if character_crops:
|
|
|
109 |
recognized_characters = recognize_characters(character_crops)
|
110 |
+
st.write("Recognized Characters:", "".join(recognized_characters))
|
|
|
|
|
|
|
|
|
111 |
else:
|
112 |
st.write("No characters detected in this license plate.")
|
113 |
else:
|
114 |
+
st.write("No license plates detected. Running character detection on the full image.")
|
115 |
+
character_crops = detect_and_crop_characters(cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR))
|
116 |
+
|
117 |
+
if character_crops:
|
118 |
+
recognized_characters = recognize_characters(character_crops)
|
119 |
+
st.write("Recognized Characters:", "".join(recognized_characters))
|
120 |
+
else:
|
121 |
+
st.write("No characters detected in the full image.")
|
122 |
|
123 |
st.success("Processing complete!")
|