|
import streamlit as st |
|
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor |
|
|
|
import cv2 |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
from rembg import remove |
|
from PIL import Image |
|
|
|
|
|
|
|
|
|
import ultralytics |
|
from ultralytics import YOLO |
|
|
|
model = YOLO('yolov8n.pt') |
|
sam_checkpoint = "sam_vit_b_01ec64.pth" |
|
model_type = "vit_b" |
|
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint) |
|
predictor = SamPredictor(sam) |
|
|
|
def detected_objects(filename:str): |
|
results = model.predict(source=filename, conf=0.25) |
|
|
|
categories = results[0].names |
|
|
|
dc = [] |
|
for i in range(len(results[0])): |
|
cat = results[0].boxes[i].cls |
|
dc.append(categories[int(cat)]) |
|
|
|
print(dc) |
|
return results, dc |
|
|
|
def show_mask(mask, ax, random_color=False): |
|
if random_color: |
|
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) |
|
else: |
|
color = np.array([30/255, 144/255, 255/255, 0.6]) |
|
h, w = mask.shape[-2:] |
|
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) |
|
ax.imshow(mask_image) |
|
|
|
def show_points(coords, labels, ax, marker_size=375): |
|
pos_points = coords[labels==1] |
|
neg_points = coords[labels==0] |
|
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) |
|
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) |
|
|
|
def show_box(box, ax): |
|
x0, y0 = box[0], box[1] |
|
w, h = box[2] - box[0], box[3] - box[1] |
|
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2)) |
|
|
|
st.title('Extract Objects From Image') |
|
|
|
uploaded_file = st.file_uploader('Upload an image') |
|
|
|
if uploaded_file is not None: |
|
|
|
bytes_data = uploaded_file.getvalue() |
|
with open('uploaded_file.png','wb') as file: |
|
file.write(uploaded_file.getvalue()) |
|
|
|
|
|
|
|
results, dc = detected_objects('uploaded_file.png') |
|
|
|
st.write(dc) |
|
|
|
option = st.selectbox("Which object would you like to extract?", tuple(dc)) |
|
|
|
index_of_the_choosen_detected_object = tuple(dc).index(option) |
|
|
|
if st.button('Extract'): |
|
for result in results: |
|
boxes = result.boxes |
|
|
|
bbox=boxes.xyxy.tolist()[index_of_the_choosen_detected_object] |
|
|
|
|
|
|
|
|
|
|
|
image = cv2.cvtColor(cv2.imread('uploaded_file.png'), cv2.COLOR_BGR2RGB) |
|
predictor.set_image(image) |
|
|
|
input_box = np.array(bbox) |
|
|
|
masks, _, _ = predictor.predict( |
|
point_coords=None, |
|
point_labels=None, |
|
box=input_box[None, :], |
|
multimask_output=False, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
segmentation_mask = masks[0] |
|
binary_mask = np.where(segmentation_mask > 0.5, 1, 0) |
|
|
|
white_background = np.ones_like(image) * 255 |
|
|
|
new_image = white_background * (1 - binary_mask[..., np.newaxis]) + image * binary_mask[..., np.newaxis] |
|
|
|
|
|
plt.imsave('extracted_image.jpg', new_image.astype(np.uint8)) |
|
|
|
|
|
|
|
input_path = 'extracted_image.jpg' |
|
|
|
|
|
output_path = 'finalExtracted.png' |
|
|
|
|
|
input = Image.open(input_path) |
|
|
|
|
|
output = remove(input) |
|
|
|
|
|
output.save(output_path) |
|
|
|
|
|
with open("finalExtracted.png", "rb") as file: |
|
btn = st.download_button( |
|
label="Download final image", |
|
data=file, |
|
file_name="finalExtracted.png", |
|
mime="image/png", |
|
) |
|
|
|
|