Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -20,108 +20,64 @@ def adjust_excel_formatting(file_path):
|
|
20 |
|
21 |
def process_file_a_to_b(input_file):
|
22 |
try:
|
23 |
-
# Read the Excel file, skipping the first row (OVERNIGHT/MORNING header)
|
24 |
input_df = pd.read_excel(input_file.name, header=1)
|
25 |
-
|
26 |
-
# Get the date columns (all columns except the first one which contains model names)
|
27 |
date_columns = input_df.columns[1:].tolist()
|
28 |
-
|
29 |
-
# Melt the dataframe to long format
|
30 |
df_long = input_df.melt(
|
31 |
-
id_vars=[input_df.columns[0]],
|
32 |
var_name='DATE',
|
33 |
value_name='CHATTER'
|
34 |
)
|
35 |
-
|
36 |
-
|
37 |
-
df_long = df_long[df_long['CHATTER']
|
38 |
-
df_long = df_long[df_long['CHATTER'] != ''] # Remove empty strings
|
39 |
-
df_long = df_long[df_long['CHATTER'] != 'OFF'] # Remove 'OFF' entries
|
40 |
-
|
41 |
-
# Group by chatter and date, collect all models
|
42 |
grouped = df_long.groupby(['CHATTER', 'DATE'])[input_df.columns[0]].apply(
|
43 |
lambda x: ', '.join(sorted(x))
|
44 |
).reset_index()
|
45 |
-
|
46 |
-
# Pivot to get chatters as rows and dates as columns
|
47 |
pivoted = grouped.pivot(
|
48 |
index='CHATTER',
|
49 |
columns='DATE',
|
50 |
values=input_df.columns[0]
|
51 |
)
|
52 |
-
|
53 |
-
# Reorder columns to match original date order
|
54 |
pivoted = pivoted[date_columns]
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
'VELJKO2', 'VELJKO3', 'MARKO', 'GODDARD', 'ALEKSANDER', 'FEELIP',
|
59 |
-
'DENIS', 'TOME', 'MILA', 'VELJKO', 'DAMJAN', 'DULE', 'CONRAD',
|
60 |
-
'ALEXANDER', 'VEJKO3'
|
61 |
-
]
|
62 |
-
|
63 |
-
# Reindex with expected order, keeping any additional chatters at the end
|
64 |
-
final_df = pivoted.reindex(expected_chatters + [x for x in pivoted.index if x not in expected_chatters])
|
65 |
-
|
66 |
-
# Fill empty cells with 'OFF'
|
67 |
final_df = final_df.fillna('OFF')
|
68 |
-
|
69 |
-
# Reset index and rename the index column to 'CHATTER'
|
70 |
final_df = final_df.reset_index()
|
71 |
final_df = final_df.rename(columns={'index': 'CHATTER'})
|
72 |
-
|
73 |
return final_df
|
74 |
except Exception as e:
|
75 |
return pd.DataFrame({"Error": [str(e)]})
|
76 |
|
77 |
def process_file_b_to_a(input_file):
|
78 |
try:
|
79 |
-
# Read the Excel file
|
80 |
input_df = pd.read_excel(input_file.name, header=0)
|
81 |
-
|
82 |
-
# Get the date columns (all columns except the first one which contains chatter names)
|
83 |
date_columns = input_df.columns[1:].tolist()
|
84 |
-
|
85 |
-
# Melt the dataframe to long format
|
86 |
df_long = input_df.melt(
|
87 |
-
id_vars=[input_df.columns[0]],
|
88 |
var_name='DATE',
|
89 |
value_name='MODEL'
|
90 |
)
|
91 |
-
|
92 |
-
|
93 |
-
df_long = df_long[df_long['MODEL']
|
94 |
-
df_long = df_long[df_long['MODEL'] != ''] # Remove empty strings
|
95 |
-
df_long = df_long[df_long['MODEL'] != 'OFF'] # Remove 'OFF' entries
|
96 |
-
|
97 |
-
# Split comma-separated models into separate rows
|
98 |
df_long['MODEL'] = df_long['MODEL'].str.split(', ')
|
99 |
df_long = df_long.explode('MODEL')
|
100 |
-
|
101 |
-
# Group by model and date, collect all chatters
|
102 |
grouped = df_long.groupby(['MODEL', 'DATE'])[input_df.columns[0]].apply(
|
103 |
lambda x: ', '.join(sorted(x))
|
104 |
).reset_index()
|
105 |
-
|
106 |
-
# Pivot to get models as rows and dates as columns
|
107 |
pivoted = grouped.pivot(
|
108 |
index='MODEL',
|
109 |
columns='DATE',
|
110 |
values=input_df.columns[0]
|
111 |
)
|
112 |
-
|
113 |
-
# Reorder columns to match original date order
|
114 |
pivoted = pivoted[date_columns]
|
115 |
-
|
116 |
-
|
117 |
-
final_df = pivoted.
|
118 |
-
|
119 |
-
# Fill empty cells with 'OFF'
|
120 |
final_df = final_df.fillna('OFF')
|
121 |
-
|
122 |
-
# Reset index to make MODEL a column
|
123 |
final_df = final_df.reset_index()
|
124 |
-
|
125 |
return final_df
|
126 |
except Exception as e:
|
127 |
return pd.DataFrame({"Error": [str(e)]})
|
|
|
20 |
|
21 |
def process_file_a_to_b(input_file):
|
22 |
try:
|
|
|
23 |
input_df = pd.read_excel(input_file.name, header=1)
|
|
|
|
|
24 |
date_columns = input_df.columns[1:].tolist()
|
|
|
|
|
25 |
df_long = input_df.melt(
|
26 |
+
id_vars=[input_df.columns[0]],
|
27 |
var_name='DATE',
|
28 |
value_name='CHATTER'
|
29 |
)
|
30 |
+
df_long = df_long[df_long['CHATTER'].notna()]
|
31 |
+
df_long = df_long[df_long['CHATTER'] != '']
|
32 |
+
df_long = df_long[df_long['CHATTER'] != 'OFF']
|
|
|
|
|
|
|
|
|
33 |
grouped = df_long.groupby(['CHATTER', 'DATE'])[input_df.columns[0]].apply(
|
34 |
lambda x: ', '.join(sorted(x))
|
35 |
).reset_index()
|
|
|
|
|
36 |
pivoted = grouped.pivot(
|
37 |
index='CHATTER',
|
38 |
columns='DATE',
|
39 |
values=input_df.columns[0]
|
40 |
)
|
|
|
|
|
41 |
pivoted = pivoted[date_columns]
|
42 |
+
# Use the order of chatters as they appear in the input file
|
43 |
+
input_order = grouped['CHATTER'].drop_duplicates().tolist()
|
44 |
+
final_df = pivoted.reindex(input_order)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
final_df = final_df.fillna('OFF')
|
|
|
|
|
46 |
final_df = final_df.reset_index()
|
47 |
final_df = final_df.rename(columns={'index': 'CHATTER'})
|
|
|
48 |
return final_df
|
49 |
except Exception as e:
|
50 |
return pd.DataFrame({"Error": [str(e)]})
|
51 |
|
52 |
def process_file_b_to_a(input_file):
|
53 |
try:
|
|
|
54 |
input_df = pd.read_excel(input_file.name, header=0)
|
|
|
|
|
55 |
date_columns = input_df.columns[1:].tolist()
|
|
|
|
|
56 |
df_long = input_df.melt(
|
57 |
+
id_vars=[input_df.columns[0]],
|
58 |
var_name='DATE',
|
59 |
value_name='MODEL'
|
60 |
)
|
61 |
+
df_long = df_long[df_long['MODEL'].notna()]
|
62 |
+
df_long = df_long[df_long['MODEL'] != '']
|
63 |
+
df_long = df_long[df_long['MODEL'] != 'OFF']
|
|
|
|
|
|
|
|
|
64 |
df_long['MODEL'] = df_long['MODEL'].str.split(', ')
|
65 |
df_long = df_long.explode('MODEL')
|
|
|
|
|
66 |
grouped = df_long.groupby(['MODEL', 'DATE'])[input_df.columns[0]].apply(
|
67 |
lambda x: ', '.join(sorted(x))
|
68 |
).reset_index()
|
|
|
|
|
69 |
pivoted = grouped.pivot(
|
70 |
index='MODEL',
|
71 |
columns='DATE',
|
72 |
values=input_df.columns[0]
|
73 |
)
|
|
|
|
|
74 |
pivoted = pivoted[date_columns]
|
75 |
+
# Use the order of models as they appear in the input file
|
76 |
+
input_order = grouped['MODEL'].drop_duplicates().tolist()
|
77 |
+
final_df = pivoted.reindex(input_order)
|
|
|
|
|
78 |
final_df = final_df.fillna('OFF')
|
|
|
|
|
79 |
final_df = final_df.reset_index()
|
80 |
+
final_df = final_df.rename(columns={'index': 'MODEL'})
|
81 |
return final_df
|
82 |
except Exception as e:
|
83 |
return pd.DataFrame({"Error": [str(e)]})
|