schedule_formatter / schedule_converter.py
kreemyyyy's picture
Update schedule_converter.py
89fb4b7 verified
raw
history blame
10.5 kB
import gradio as gr
import pandas as pd
import tempfile
import os
import requests
from openpyxl import load_workbook
from openpyxl.styles import Alignment
def auto_correct_names(series, threshold=90):
try:
from fuzzywuzzy import process, fuzz
except ImportError:
return series # Fallback if fuzzywuzzy is not installed
unique_names = series.dropna().unique()
name_mapping = {}
for name in unique_names:
matches = process.extractBests(
name, unique_names,
scorer=fuzz.token_sort_ratio,
score_cutoff=threshold
)
if matches:
best_match = max(matches, key=lambda x: (x[1], list(series).count(x[0])))
name_mapping[name] = best_match[0]
return series.replace(name_mapping)
def adjust_excel_formatting(file_path):
wb = load_workbook(file_path)
ws = wb.active
for col in ws.columns:
max_length = 0
col_letter = col[0].column_letter
for cell in col:
if cell.value:
max_length = max(max_length, len(str(cell.value)))
cell.alignment = Alignment(wrap_text=True)
ws.column_dimensions[col_letter].width = max_length + 2
wb.save(file_path)
def process_file_a_to_b(input_file, output_file):
try:
# Read the Excel file, skipping the first row (OVERNIGHT/MORNING header)
input_df = pd.read_excel(input_file, header=1)
# Get the date columns (all columns except the first one which contains model names)
date_columns = input_df.columns[1:].tolist()
# Melt the dataframe to long format
df_long = input_df.melt(
id_vars=[input_df.columns[0]], # First column (Model names)
var_name='DATE',
value_name='CHATTER'
)
# Clean up the data
df_long = df_long[df_long['CHATTER'].notna()] # Remove empty cells
df_long = df_long[df_long['CHATTER'] != ''] # Remove empty strings
df_long = df_long[df_long['CHATTER'] != 'OFF'] # Remove 'OFF' entries
# Group by chatter and date, collect all models
grouped = df_long.groupby(['CHATTER', 'DATE'])[input_df.columns[0]].apply(
lambda x: ', '.join(sorted(x))
).reset_index()
# Pivot to get chatters as rows and dates as columns
pivoted = grouped.pivot(
index='CHATTER',
columns='DATE',
values=input_df.columns[0]
)
# Reorder columns to match original date order
pivoted = pivoted[date_columns]
# Define the expected order of chatters
expected_chatters = [
'VELJKO2', 'VELJKO3', 'MARKO', 'GODDARD', 'ALEKSANDER', 'FEELIP',
'DENIS', 'TOME', 'MILA', 'VELJKO', 'DAMJAN', 'DULE', 'CONRAD',
'ALEXANDER', 'VEJKO3'
]
# Reindex with expected order, keeping any additional chatters at the end
final_df = pivoted.reindex(expected_chatters + [x for x in pivoted.index if x not in expected_chatters])
# Fill empty cells with 'OFF'
final_df = final_df.fillna('OFF')
# Reset index and rename the index column to 'CHATTER'
final_df = final_df.reset_index()
final_df = final_df.rename(columns={'index': 'CHATTER'})
# Try to save to Excel, with error handling
try:
final_df.to_excel(output_file, index=False)
print(f"Saved Format B to {output_file}")
except PermissionError:
# If file is in use, try a different name
base, ext = os.path.splitext(output_file)
new_output = f"{base}_new{ext}"
final_df.to_excel(new_output, index=False)
print(f"Original file was in use. Saved Format B to {new_output}")
except Exception as e:
print(f"Error processing file: {str(e)}")
raise
def process_file_b_to_a(input_file, output_file):
try:
# Read the Excel file
input_df = pd.read_excel(input_file, header=0)
# Get the date columns (all columns except the first one which contains chatter names)
date_columns = input_df.columns[1:].tolist()
# Melt the dataframe to long format
df_long = input_df.melt(
id_vars=[input_df.columns[0]], # First column (Chatter names)
var_name='DATE',
value_name='MODEL'
)
# Clean up the data
df_long = df_long[df_long['MODEL'].notna()] # Remove empty cells
df_long = df_long[df_long['MODEL'] != ''] # Remove empty strings
df_long = df_long[df_long['MODEL'] != 'OFF'] # Remove 'OFF' entries
# Split comma-separated models into separate rows
df_long['MODEL'] = df_long['MODEL'].str.split(', ')
df_long = df_long.explode('MODEL')
# Group by model and date, collect all chatters
grouped = df_long.groupby(['MODEL', 'DATE'])[input_df.columns[0]].apply(
lambda x: ', '.join(sorted(x))
).reset_index()
# Pivot to get models as rows and dates as columns
pivoted = grouped.pivot(
index='MODEL',
columns='DATE',
values=input_df.columns[0]
)
# Reorder columns to match original date order
pivoted = pivoted[date_columns]
# Sort models by frequency
model_order = grouped['MODEL'].value_counts().index.tolist()
final_df = pivoted.reindex(model_order)
# Fill empty cells with 'OFF'
final_df = final_df.fillna('OFF')
# Reset index to make MODEL a column
final_df = final_df.reset_index()
# Try to save to Excel, with error handling
try:
final_df.to_excel(output_file, index=False)
print(f"Saved Format A to {output_file}")
except PermissionError:
# If file is in use, try a different name
base, ext = os.path.splitext(output_file)
new_output = f"{base}_new{ext}"
final_df.to_excel(new_output, index=False)
print(f"Original file was in use. Saved Format A to {new_output}")
except Exception as e:
print(f"Error processing file: {str(e)}")
raise
def save_and_format_excel(df, original_filename):
name_part, ext_part = os.path.splitext(os.path.basename(original_filename))
processed_filename = f"{name_part}_processed{ext_part}"
temp_file_path = os.path.join(tempfile.gettempdir(), processed_filename)
df.to_excel(temp_file_path, index=False, sheet_name='Schedule')
adjust_excel_formatting(temp_file_path)
return temp_file_path
def get_local_file_from_path_or_url(path_or_url):
if path_or_url.startswith('http://') or path_or_url.startswith('https://'):
# Download the file
response = requests.get(path_or_url, stream=True)
response.raise_for_status()
suffix = os.path.splitext(path_or_url)[-1] or '.xlsx'
with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as tmp_file:
for chunk in response.iter_content(chunk_size=8192):
tmp_file.write(chunk)
return tmp_file.name
else:
return path_or_url
def process_file(input_file, direction):
try:
if direction == "Format A β†’ Format B":
df = process_file_a_to_b(input_file, direction)
else:
df = process_file_b_to_a(input_file, direction)
temp_file_path = save_and_format_excel(df, input_file)
return df, temp_file_path
except Exception as e:
error_df = pd.DataFrame({"Error": [f"⚠️ {str(e)}"]})
return error_df, None
def download_file(out_path):
return out_path
with gr.Blocks(title="Schedule Converter") as demo:
gr.Markdown("# πŸ“… Schedule Converter")
gr.Markdown("Upload your schedule Excel file, select conversion direction, and download the result.")
with gr.Row():
input_file = gr.File(label="Upload Schedule File", type="filepath")
direction = gr.Dropdown([
"Format A β†’ Format B",
"Format B β†’ Format A"
], value="Format A β†’ Format B", label="Conversion Direction")
with gr.Row():
process_btn = gr.Button("Process File", variant="primary")
reset_btn = gr.Button("Upload New File")
output_table = gr.Dataframe(label="Preview", wrap=True)
download_button = gr.Button("Download Processed File", visible=False)
temp_file_path = gr.State(value=None)
def reset_components():
return [None, pd.DataFrame(), None, gr.update(visible=False)]
def process_and_show(file, direction):
df, out_path = process_file(file, direction)
if out_path:
return df, out_path, gr.update(visible=True)
return df, None, gr.update(visible=False)
process_btn.click(
process_and_show,
inputs=[input_file, direction],
outputs=[output_table, temp_file_path, download_button]
)
reset_btn.click(
reset_components,
outputs=[input_file, output_table, temp_file_path, download_button]
)
download_button.click(
download_file,
inputs=temp_file_path,
outputs=gr.File(label="Processed Schedule")
)
if __name__ == "__main__":
print("Enter the path or URL to your Excel file:")
file_path_or_url = input().strip()
print("Enter output file path (e.g., D:/work/formatter/schedule_a.xlsx):")
output_path = input().strip()
print("Select conversion direction:")
print("1: Format A β†’ Format B")
print("2: Format B β†’ Format A")
direction_input = input().strip()
direction = "Format A β†’ Format B" if direction_input == "1" else "Format B β†’ Format A"
try:
local_file = get_local_file_from_path_or_url(file_path_or_url)
if direction == "Format A β†’ Format B":
process_file_a_to_b(local_file, output_path)
else:
process_file_b_to_a(local_file, output_path)
except Exception as e:
print(f"Error: {str(e)}")
print("Please make sure:")
print("1. The input file exists and is not open in Excel")
print("2. The output file is not open in Excel")
print("3. You have write permissions in the output directory")
demo.launch()