Spaces:
Runtime error
Runtime error
File size: 10,473 Bytes
89fb4b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import gradio as gr
import pandas as pd
import tempfile
import os
import requests
from openpyxl import load_workbook
from openpyxl.styles import Alignment
def auto_correct_names(series, threshold=90):
try:
from fuzzywuzzy import process, fuzz
except ImportError:
return series # Fallback if fuzzywuzzy is not installed
unique_names = series.dropna().unique()
name_mapping = {}
for name in unique_names:
matches = process.extractBests(
name, unique_names,
scorer=fuzz.token_sort_ratio,
score_cutoff=threshold
)
if matches:
best_match = max(matches, key=lambda x: (x[1], list(series).count(x[0])))
name_mapping[name] = best_match[0]
return series.replace(name_mapping)
def adjust_excel_formatting(file_path):
wb = load_workbook(file_path)
ws = wb.active
for col in ws.columns:
max_length = 0
col_letter = col[0].column_letter
for cell in col:
if cell.value:
max_length = max(max_length, len(str(cell.value)))
cell.alignment = Alignment(wrap_text=True)
ws.column_dimensions[col_letter].width = max_length + 2
wb.save(file_path)
def process_file_a_to_b(input_file, output_file):
try:
# Read the Excel file, skipping the first row (OVERNIGHT/MORNING header)
input_df = pd.read_excel(input_file, header=1)
# Get the date columns (all columns except the first one which contains model names)
date_columns = input_df.columns[1:].tolist()
# Melt the dataframe to long format
df_long = input_df.melt(
id_vars=[input_df.columns[0]], # First column (Model names)
var_name='DATE',
value_name='CHATTER'
)
# Clean up the data
df_long = df_long[df_long['CHATTER'].notna()] # Remove empty cells
df_long = df_long[df_long['CHATTER'] != ''] # Remove empty strings
df_long = df_long[df_long['CHATTER'] != 'OFF'] # Remove 'OFF' entries
# Group by chatter and date, collect all models
grouped = df_long.groupby(['CHATTER', 'DATE'])[input_df.columns[0]].apply(
lambda x: ', '.join(sorted(x))
).reset_index()
# Pivot to get chatters as rows and dates as columns
pivoted = grouped.pivot(
index='CHATTER',
columns='DATE',
values=input_df.columns[0]
)
# Reorder columns to match original date order
pivoted = pivoted[date_columns]
# Define the expected order of chatters
expected_chatters = [
'VELJKO2', 'VELJKO3', 'MARKO', 'GODDARD', 'ALEKSANDER', 'FEELIP',
'DENIS', 'TOME', 'MILA', 'VELJKO', 'DAMJAN', 'DULE', 'CONRAD',
'ALEXANDER', 'VEJKO3'
]
# Reindex with expected order, keeping any additional chatters at the end
final_df = pivoted.reindex(expected_chatters + [x for x in pivoted.index if x not in expected_chatters])
# Fill empty cells with 'OFF'
final_df = final_df.fillna('OFF')
# Reset index and rename the index column to 'CHATTER'
final_df = final_df.reset_index()
final_df = final_df.rename(columns={'index': 'CHATTER'})
# Try to save to Excel, with error handling
try:
final_df.to_excel(output_file, index=False)
print(f"Saved Format B to {output_file}")
except PermissionError:
# If file is in use, try a different name
base, ext = os.path.splitext(output_file)
new_output = f"{base}_new{ext}"
final_df.to_excel(new_output, index=False)
print(f"Original file was in use. Saved Format B to {new_output}")
except Exception as e:
print(f"Error processing file: {str(e)}")
raise
def process_file_b_to_a(input_file, output_file):
try:
# Read the Excel file
input_df = pd.read_excel(input_file, header=0)
# Get the date columns (all columns except the first one which contains chatter names)
date_columns = input_df.columns[1:].tolist()
# Melt the dataframe to long format
df_long = input_df.melt(
id_vars=[input_df.columns[0]], # First column (Chatter names)
var_name='DATE',
value_name='MODEL'
)
# Clean up the data
df_long = df_long[df_long['MODEL'].notna()] # Remove empty cells
df_long = df_long[df_long['MODEL'] != ''] # Remove empty strings
df_long = df_long[df_long['MODEL'] != 'OFF'] # Remove 'OFF' entries
# Split comma-separated models into separate rows
df_long['MODEL'] = df_long['MODEL'].str.split(', ')
df_long = df_long.explode('MODEL')
# Group by model and date, collect all chatters
grouped = df_long.groupby(['MODEL', 'DATE'])[input_df.columns[0]].apply(
lambda x: ', '.join(sorted(x))
).reset_index()
# Pivot to get models as rows and dates as columns
pivoted = grouped.pivot(
index='MODEL',
columns='DATE',
values=input_df.columns[0]
)
# Reorder columns to match original date order
pivoted = pivoted[date_columns]
# Sort models by frequency
model_order = grouped['MODEL'].value_counts().index.tolist()
final_df = pivoted.reindex(model_order)
# Fill empty cells with 'OFF'
final_df = final_df.fillna('OFF')
# Reset index to make MODEL a column
final_df = final_df.reset_index()
# Try to save to Excel, with error handling
try:
final_df.to_excel(output_file, index=False)
print(f"Saved Format A to {output_file}")
except PermissionError:
# If file is in use, try a different name
base, ext = os.path.splitext(output_file)
new_output = f"{base}_new{ext}"
final_df.to_excel(new_output, index=False)
print(f"Original file was in use. Saved Format A to {new_output}")
except Exception as e:
print(f"Error processing file: {str(e)}")
raise
def save_and_format_excel(df, original_filename):
name_part, ext_part = os.path.splitext(os.path.basename(original_filename))
processed_filename = f"{name_part}_processed{ext_part}"
temp_file_path = os.path.join(tempfile.gettempdir(), processed_filename)
df.to_excel(temp_file_path, index=False, sheet_name='Schedule')
adjust_excel_formatting(temp_file_path)
return temp_file_path
def get_local_file_from_path_or_url(path_or_url):
if path_or_url.startswith('http://') or path_or_url.startswith('https://'):
# Download the file
response = requests.get(path_or_url, stream=True)
response.raise_for_status()
suffix = os.path.splitext(path_or_url)[-1] or '.xlsx'
with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as tmp_file:
for chunk in response.iter_content(chunk_size=8192):
tmp_file.write(chunk)
return tmp_file.name
else:
return path_or_url
def process_file(input_file, direction):
try:
if direction == "Format A β Format B":
df = process_file_a_to_b(input_file, direction)
else:
df = process_file_b_to_a(input_file, direction)
temp_file_path = save_and_format_excel(df, input_file)
return df, temp_file_path
except Exception as e:
error_df = pd.DataFrame({"Error": [f"β οΈ {str(e)}"]})
return error_df, None
def download_file(out_path):
return out_path
with gr.Blocks(title="Schedule Converter") as demo:
gr.Markdown("# π
Schedule Converter")
gr.Markdown("Upload your schedule Excel file, select conversion direction, and download the result.")
with gr.Row():
input_file = gr.File(label="Upload Schedule File", type="filepath")
direction = gr.Dropdown([
"Format A β Format B",
"Format B β Format A"
], value="Format A β Format B", label="Conversion Direction")
with gr.Row():
process_btn = gr.Button("Process File", variant="primary")
reset_btn = gr.Button("Upload New File")
output_table = gr.Dataframe(label="Preview", wrap=True)
download_button = gr.Button("Download Processed File", visible=False)
temp_file_path = gr.State(value=None)
def reset_components():
return [None, pd.DataFrame(), None, gr.update(visible=False)]
def process_and_show(file, direction):
df, out_path = process_file(file, direction)
if out_path:
return df, out_path, gr.update(visible=True)
return df, None, gr.update(visible=False)
process_btn.click(
process_and_show,
inputs=[input_file, direction],
outputs=[output_table, temp_file_path, download_button]
)
reset_btn.click(
reset_components,
outputs=[input_file, output_table, temp_file_path, download_button]
)
download_button.click(
download_file,
inputs=temp_file_path,
outputs=gr.File(label="Processed Schedule")
)
if __name__ == "__main__":
print("Enter the path or URL to your Excel file:")
file_path_or_url = input().strip()
print("Enter output file path (e.g., D:/work/formatter/schedule_a.xlsx):")
output_path = input().strip()
print("Select conversion direction:")
print("1: Format A β Format B")
print("2: Format B β Format A")
direction_input = input().strip()
direction = "Format A β Format B" if direction_input == "1" else "Format B β Format A"
try:
local_file = get_local_file_from_path_or_url(file_path_or_url)
if direction == "Format A β Format B":
process_file_a_to_b(local_file, output_path)
else:
process_file_b_to_a(local_file, output_path)
except Exception as e:
print(f"Error: {str(e)}")
print("Please make sure:")
print("1. The input file exists and is not open in Excel")
print("2. The output file is not open in Excel")
print("3. You have write permissions in the output directory")
demo.launch() |