import nest_asyncio
nest_asyncio.apply()

import os
import gradio as gr
import logging
from roboflow import Roboflow
from PIL import Image, ImageDraw
import cv2
import numpy as np
from math import atan2, degrees
import asyncio
from pyppeteer import launch

# Configure logging
logging.basicConfig(
    level=logging.DEBUG,
    format="%(asctime)s - %(levelname)s - %(message)s",
    handlers=[
        logging.FileHandler("debug.log"),
        logging.StreamHandler()
    ]
)

# Roboflow and model configuration
ROBOFLOW_API_KEY = "KUP9w62eUcD5PrrRMJsV"
PROJECT_NAME = "model_verification_project"
VERSION_NUMBER = 2

async def _generate_handwriting_image(text_prompt, screenshot_path):
    try:
        browser = await launch(
            headless=True,
            executablePath="/usr/bin/chromium-browser",  # Path to Chromium
            args=[
                '--no-sandbox',
                '--disable-setuid-sandbox',
                '--disable-dev-shm-usage',
                '--disable-gpu',
                '--single-process',
                '--no-zygote',
                '--window-size=1920,1080'
            ]
        )
        page = await browser.newPage()
        
        # Navigate to Calligraphr
        await page.goto('https://www.calligraphr.com/en/font/', {
            'waitUntil': 'networkidle2',
            'timeout': 60000
        })
        
        # Wait for the text input field
        await page.waitForSelector('#text-input', {'timeout': 30000})
        
        # Type the text prompt
        await page.type('#text-input', text_prompt)
        
        # Wait for rendering
        await asyncio.sleep(5)
        
        # Take a screenshot
        await page.screenshot({
            'path': screenshot_path,
            'clip': {'x': 100, 'y': 200, 'width': 600, 'height': 150}
        })
        return screenshot_path

    except Exception as e:
        logging.error(f"Pyppeteer error: {str(e)}")
        return None

    finally:
        if 'browser' in locals():
            await browser.close()

def generate_handwriting_image(text_prompt, screenshot_path="/tmp/handwriting.png"):
    try:
        loop = asyncio.get_event_loop()
        result = loop.run_until_complete(_generate_handwriting_image(text_prompt, screenshot_path))
        return result
    except Exception as e:
        logging.error(f"Error generating handwriting image: {e}")
        return None

def detect_paper_angle(image, bounding_box):
    x1, y1, x2, y2 = bounding_box
    roi = np.array(image)[y1:y2, x1:x2]
    gray = cv2.cvtColor(roi, cv2.COLOR_RGBA2GRAY)
    edges = cv2.Canny(gray, 50, 150)
    lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=100, minLineLength=50, maxLineGap=10)
    if lines is not None:
        longest_line = max(
            lines, key=lambda line: np.linalg.norm((line[0][2] - line[0][0], line[0][3] - line[0][1]))
        )
        x1_line, y1_line, x2_line, y2_line = longest_line[0]
        dx = x2_line - x1_line
        dy = y2_line - y1_line
        angle = degrees(atan2(dy, dx))
        return angle
    else:
        return 0

def process_image(image, text):
    try:
        # Initialize Roboflow
        rf = Roboflow(api_key=ROBOFLOW_API_KEY)
        logging.debug("Initialized Roboflow API.")
        project = rf.workspace().project(PROJECT_NAME)
        logging.debug("Accessed project in Roboflow.")
        model = project.version(VERSION_NUMBER).model
        logging.debug("Loaded model from Roboflow.")

        # Save input image temporarily
        input_image_path = "/tmp/input_image.jpg"
        image.save(input_image_path)
        logging.debug(f"Input image saved to {input_image_path}.")

        # Perform inference
        logging.debug("Performing inference on the image...")
        prediction = model.predict(input_image_path, confidence=70, overlap=50).json()
        logging.debug(f"Inference result: {prediction}")

        pil_image = image.convert("RGBA")
        logging.debug("Converted image to RGBA mode.")

        for obj in prediction['predictions']:
            white_paper_width = obj['width']
            white_paper_height = obj['height']
            padding_x = int(white_paper_width * 0.1)
            padding_y = int(white_paper_height * 0.1)
            box_width = white_paper_width - 2 * padding_x
            box_height = white_paper_height - 2 * padding_y
            logging.debug(f"Padded white paper dimensions: width={box_width}, height={box_height}.")

            x1_padded = int(obj['x'] - white_paper_width / 2 + padding_x)
            y1_padded = int(obj['y'] - white_paper_height / 2 + padding_y)
            x2_padded = int(obj['x'] + white_paper_width / 2 - padding_x)
            y2_padded = int(obj['y'] + white_paper_height / 2 - padding_y)

            angle = detect_paper_angle(np.array(image), (x1_padded, y1_padded, x2_padded, y2_padded))
            logging.debug(f"Detected paper angle: {angle} degrees.")

            # (Optional) debug bounding box
            debug_layer = pil_image.copy()
            debug_draw = ImageDraw.Draw(debug_layer)
            debug_draw.rectangle([(x1_padded, y1_padded), (x2_padded, y2_padded)], outline="red", width=3)
            debug_layer.save("/tmp/debug_bounding_box.png")
            logging.debug("Saved bounding box debug image to /tmp/debug_bounding_box.png.")

            handwriting_path = generate_handwriting_image(text, "/tmp/handwriting.png")
            if not handwriting_path:
                logging.error("Handwriting image generation failed.")
                continue

            handwriting_img = Image.open(handwriting_path).convert("RGBA")
            handwriting_img = handwriting_img.resize((box_width, box_height), Image.ANTIALIAS)
            rotated_handwriting = handwriting_img.rotate(-angle, resample=Image.BICUBIC, expand=True)

            text_layer = Image.new("RGBA", pil_image.size, (255, 255, 255, 0))
            paste_x = int(obj['x'] - rotated_handwriting.size[0] / 2)
            paste_y = int(obj['y'] - rotated_handwriting.size[1] / 2)
            text_layer.paste(rotated_handwriting, (paste_x, paste_y), rotated_handwriting)
            pil_image = Image.alpha_composite(pil_image, text_layer)
            logging.debug("Handwriting layer composited onto the original image.")

        output_image_path = "/tmp/output_image.png"
        pil_image.convert("RGB").save(output_image_path)
        logging.debug(f"Output image saved to {output_image_path}.")
        return output_image_path

    except Exception as e:
        logging.error(f"Error during image processing: {e}")
        return None

def gradio_inference(image, text):
    logging.debug("Starting Gradio inference.")
    result_path = process_image(image, text)
    if result_path:
        logging.debug("Gradio inference successful.")
        return result_path, result_path, "Processing complete! Download the image below."
    logging.error("Gradio inference failed.")
    return None, None, "An error occurred while processing the image. Please check the logs."

interface = gr.Interface(
    fn=gradio_inference,
    inputs=[
        gr.Image(type="pil", label="Upload an Image"),
        gr.Textbox(label="Enter Text to Overlay")
    ],
    outputs=[
        gr.Image(label="Processed Image Preview"),
        gr.File(label="Download Processed Image"),
        gr.Textbox(label="Status")
    ],
    title="Roboflow Detection with Handwriting Overlay",
    description="Upload an image and enter text to overlay. The Roboflow model detects the white paper area, and a handwriting image is generated via Calligraphr using Pyppeteer. The output image is composited accordingly.",
    allow_flagging="never"
)

if __name__ == "__main__":
    interface.launch(
        server_name="0.0.0.0",
        server_port=int(os.environ.get("PORT", 7860)),
        # Remove enable_queue if your Gradio version doesn't support it
        enable_queue=True
    )