File size: 6,716 Bytes
cdf2807
bce6b06
cdf2807
bce6b06
358aaac
bce6b06
aa3525b
e22be08
bce6b06
 
 
 
 
 
 
 
a3de3da
bce6b06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdf2807
bce6b06
 
 
 
 
 
 
 
40ca158
bce6b06
 
cdf2807
bce6b06
 
 
 
 
 
 
 
aa3525b
bce6b06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa3525b
bce6b06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af26c90
bce6b06
 
 
bc36177
2cc4cc3
bce6b06
41a9969
bce6b06
 
 
 
 
 
2cc4cc3
bce6b06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cc4cc3
bce6b06
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import pandas as pd
import openpyxl
import gradio as gr
import tempfile
import os
from datetime import datetime

def convert_schedule(file_path, direction):
    if file_path is None:
        return pd.DataFrame({'Error': ['Please upload a file']}), None
        
    try:
        # 1. Load raw header rows to determine day labels
        raw = pd.read_excel(file_path, header=None)
        header1 = raw.iloc[0, 1:].astype(object)
        header2 = raw.iloc[1, 1:].astype(object)

        # Decide which header row to use: prefer second if fully populated
        if header2.notna().all() and not header2.str.startswith('Unnamed').any():
            days = header2.tolist()
            data_start = 2
        else:
            # Forward-fill merged first-row headers
            days = []
            last = None
            for val in header1:
                if pd.isna(val) or str(val).startswith('Unnamed'):
                    days.append(last)
                else:
                    last = str(val)
                    days.append(last)
            data_start = 1

        # 2. Load actual data using resolved day columns
        df = pd.read_excel(
            file_path,
            header=data_start,
            index_col=0,
            usecols=[0] + list(range(1, len(days) + 1))
        )
        df.columns = [str(day) for day in days]

        # 3. Retain original day column order
        day_cols = list(df.columns)

        # 4. Build assignment mapping via explicit iteration
        assignments = {}
        if direction == 'A to B':
            # Models in rows → Texters as rows
            for model in df.index.astype(str):
                for day in day_cols:
                    cell = df.at[model, day]
                    if pd.isna(cell):
                        continue
                    for texter in str(cell).split(','):
                        texter = texter.strip()
                        if not texter or texter.lower() in ['nan', 'none', '']:
                            continue
                        assignments.setdefault(texter, {d: [] for d in day_cols})
                        assignments[texter][day].append(model)
            
            if not assignments:
                result = pd.DataFrame(columns=day_cols)
                first_col_name = 'Texter'
            else:
                index = sorted(assignments.keys())
                result = pd.DataFrame(index=index, columns=day_cols)
                first_col_name = 'Texter'
                for texter, days_map in assignments.items():
                    for day in day_cols:
                        models = days_map.get(day, [])
                        result.at[texter, day] = ', '.join(models) if models else 'OFF'
        else:
            # Texters in rows → Models as rows
            for texter in df.index.astype(str):
                for day in day_cols:
                    cell = df.at[texter, day]
                    if pd.isna(cell):
                        continue
                    for model in str(cell).split(','):
                        model = model.strip()
                        if not model or model.lower() in ['nan', 'none', '']:
                            continue
                        assignments.setdefault(model, {d: [] for d in day_cols})
                        assignments[model][day].append(texter)
            
            if not assignments:
                result = pd.DataFrame(columns=day_cols)
                first_col_name = 'Model'
            else:
                index = sorted(assignments.keys())
                result = pd.DataFrame(index=index, columns=day_cols)
                first_col_name = 'Model'
                for model, days_map in assignments.items():
                    for day in day_cols:
                        texters = days_map.get(day, [])
                        result.at[model, day] = ', '.join(texters) if texters else 'OFF'

        # 5. Cleanup axis names
        result.index.name = None
        result.columns.name = None

        # For display, include index as a column
        display_df = result.reset_index().rename(columns={'index': first_col_name})

        # 6. Create downloadable file with proper path handling
        result_clean = result.copy().fillna('OFF')
        
        # Ensure all values are strings
        for col in result_clean.columns:
            result_clean[col] = result_clean[col].astype(str)

        # Create download file in a way that works with Gradio
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        output_filename = f"converted_schedule_{timestamp}.xlsx"
        
        # Use tempfile.NamedTemporaryFile but keep it open
        temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.xlsx', prefix='schedule_')
        temp_path = temp_file.name
        temp_file.close()
        
        # Save to the temporary file
        download_df = result_clean.reset_index().rename(columns={'index': first_col_name})
        download_df.to_excel(temp_path, sheet_name='Converted Schedule', index=False, engine='openpyxl')

        return display_df, temp_path

    except Exception as e:
        error_msg = f"Error processing file: {str(e)}"
        print(f"DEBUG: {error_msg}")  # For debugging
        error_df = pd.DataFrame({'Error': [error_msg]})
        return error_df, None

# Create the interface with better error handling
def create_interface():
    iface = gr.Interface(
        fn=convert_schedule,
        inputs=[
            gr.File(
                label='Upload Weekly Schedule (.xlsx)', 
                file_count='single', 
                file_types=['.xlsx', '.xls']
            ),
            gr.Radio(
                ['A to B', 'B to A'], 
                label='Convert Direction', 
                value='A to B',
                info='A to B: Models→Texters, B to A: Texters→Models'
            )
        ],
        outputs=[
            gr.Dataframe(label='Converted Schedule (Preview)', wrap=True),
            gr.File(label='Download Converted Schedule')
        ],
        title='🔄 7-Day Schedule Converter',
        description=(
            '**How to use:**\n'
            '1. Upload your Excel file with a 7-day schedule\n'
            '2. Choose conversion direction\n'
            '3. Preview the result and download the converted file\n\n'
            '*Supports merged headers and handles Models ↔ Texters conversion*'
        ),
        flagging_mode='never',
        allow_flagging='never'
    )
    return iface

if __name__ == "__main__":
    iface = create_interface()
    iface.launch(
        server_name='0.0.0.0', 
        server_port=7860,
        share=False,
        debug=True
    )