File size: 5,964 Bytes
cdf2807
441a231
cdf2807
441a231
358aaac
441a231
 
aa3525b
e22be08
441a231
 
 
 
 
a3de3da
441a231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdf2807
441a231
 
 
 
 
 
 
 
40ca158
441a231
 
cdf2807
441a231
 
 
 
 
 
 
 
aa3525b
441a231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa3525b
441a231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af26c90
441a231
 
 
bc36177
2cc4cc3
441a231
41a9969
441a231
 
 
 
 
 
2cc4cc3
441a231
 
 
 
 
 
 
 
 
 
 
2cc4cc3
441a231
 
 
 
 
 
 
358aaac
 
 
 
441a231
358aaac
 
441a231
 
358aaac
 
 
 
441a231
 
358aaac
 
 
441a231
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import pandas as pd
import openpyxl
import gradio as gr
import io
import os
import tempfile
from datetime import datetime

def convert_schedule(file_path, direction):
    try:
        # 1. Load raw header rows to determine day labels
        raw = pd.read_excel(file_path, header=None)
        header1 = raw.iloc[0, 1:].astype(object)
        header2 = raw.iloc[1, 1:].astype(object)

        # Decide which header row to use: prefer second if fully populated
        if header2.notna().all() and not header2.str.startswith('Unnamed').any():
            days = header2.tolist()
            data_start = 2
        else:
            # Forward-fill merged first-row headers
            days = []
            last = None
            for val in header1:
                if pd.isna(val) or str(val).startswith('Unnamed'):
                    days.append(last)
                else:
                    last = str(val)
                    days.append(last)
            data_start = 1

        # 2. Load actual data using resolved day columns
        df = pd.read_excel(
            file_path,
            header=data_start,
            index_col=0,
            usecols=[0] + list(range(1, len(days) + 1))
        )
        df.columns = [str(day) for day in days]

        # 3. Retain original day column order
        day_cols = list(df.columns)

        # 4. Build assignment mapping via explicit iteration
        assignments = {}
        if direction == 'A to B':
            # Models in rows → Texters as rows
            for model in df.index.astype(str):
                for day in day_cols:
                    cell = df.at[model, day]
                    if pd.isna(cell):
                        continue
                    for texter in str(cell).split(','):
                        texter = texter.strip()
                        if not texter or texter.lower() in ['nan', 'none', '']:
                            continue
                        assignments.setdefault(texter, {d: [] for d in day_cols})
                        assignments[texter][day].append(model)
            
            if not assignments:
                result = pd.DataFrame(columns=day_cols)
                first_col_name = 'Texter'
            else:
                index = sorted(assignments.keys())
                result = pd.DataFrame(index=index, columns=day_cols)
                first_col_name = 'Texter'
                for texter, days_map in assignments.items():
                    for day in day_cols:
                        models = days_map.get(day, [])
                        result.at[texter, day] = ', '.join(models) if models else 'OFF'
        else:
            # Texters in rows → Models as rows
            for texter in df.index.astype(str):
                for day in day_cols:
                    cell = df.at[texter, day]
                    if pd.isna(cell):
                        continue
                    for model in str(cell).split(','):
                        model = model.strip()
                        if not model or model.lower() in ['nan', 'none', '']:
                            continue
                        assignments.setdefault(model, {d: [] for d in day_cols})
                        assignments[model][day].append(texter)
            
            if not assignments:
                result = pd.DataFrame(columns=day_cols)
                first_col_name = 'Model'
            else:
                index = sorted(assignments.keys())
                result = pd.DataFrame(index=index, columns=day_cols)
                first_col_name = 'Model'
                for model, days_map in assignments.items():
                    for day in day_cols:
                        texters = days_map.get(day, [])
                        result.at[model, day] = ', '.join(texters) if texters else 'OFF'

        # 5. Cleanup axis names
        result.index.name = None
        result.columns.name = None

        # For display, include index as a column
        display_df = result.reset_index().rename(columns={'index': first_col_name})

        # 6. Create downloadable file
        result_clean = result.copy().fillna('OFF')
        
        # Ensure all values are strings
        for col in result_clean.columns:
            result_clean[col] = result_clean[col].astype(str)

        # Create a temporary file for download
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        temp_dir = tempfile.gettempdir()
        output_filename = f"converted_schedule_{timestamp}.xlsx"
        output_path = os.path.join(temp_dir, output_filename)
        
        # Save to Excel file
        with pd.ExcelWriter(output_path, engine='openpyxl') as writer:
            # Reset index to include the first column name
            download_df = result_clean.reset_index().rename(columns={'index': first_col_name})
            download_df.to_excel(writer, sheet_name='Converted Schedule', index=False)

        return display_df, output_path

    except Exception as e:
        error_df = pd.DataFrame({'Error': [f"Error processing file: {str(e)}"]})
        return error_df, None

# Gradio interface with proper file download
iface = gr.Interface(
    fn=convert_schedule,
    inputs=[
        gr.File(label='Upload Weekly Schedule (.xlsx)', file_count='single', type='filepath'),
        gr.Radio(['A to B', 'B to A'], label='Convert Direction', value='A to B')
    ],
    outputs=[
        gr.Dataframe(label='Converted Schedule (Preview)'),
        gr.File(label='Download Converted Schedule (.xlsx)')
    ],
    title='7-Day Schedule Converter',
    description=(
        'Upload a 7-column weekly schedule (Models vs Days) with merged or single headers, '
        'then flip between Models→Texters or Texters→Models. '
        'The converted file will be available for download as an Excel file.'
    ),
    flagging_mode='never'
)

if __name__ == "__main__":
    iface.launch(server_name='0.0.0.0', server_port=7860)