File size: 6,217 Bytes
cdf2807 41a9969 cdf2807 bc36177 cdf2807 41a9969 aa3525b e22be08 2cc4cc3 a3de3da 2cc4cc3 cdf2807 2cc4cc3 40ca158 2cc4cc3 cdf2807 2cc4cc3 aa3525b 2cc4cc3 aa3525b 2cc4cc3 af26c90 2cc4cc3 bc36177 2cc4cc3 e27b63a 2cc4cc3 41a9969 2cc4cc3 b42ec56 2cc4cc3 b42ec56 2cc4cc3 fa525d3 2cc4cc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import pandas as pd
import openpyxl # ensure XLSX engine is available
import gradio as gr
import uuid
import os
# 7-Day Schedule Converter with explicit iteration and header fill and download support
def convert_schedule(file_path, direction):
try:
# 1. Load raw header rows to determine day labels
raw = pd.read_excel(file_path, header=None)
header1 = raw.iloc[0, 1:].astype(object)
header2 = raw.iloc[1, 1:].astype(object)
# Decide which header row to use: prefer second if fully populated
if header2.notna().all() and not header2.str.startswith('Unnamed').any():
days = header2.tolist()
data_start = 2
else:
# Forward-fill merged first-row headers
days = []
last = None
for val in header1:
if pd.isna(val) or str(val).startswith('Unnamed'):
days.append(last)
else:
last = str(val)
days.append(last)
data_start = 1
# 2. Load actual data using resolved day columns
df = pd.read_excel(
file_path,
header=data_start,
index_col=0,
usecols=[0] + list(range(1, len(days) + 1))
)
df.columns = [str(day) for day in days]
# 3. Retain original day column order
day_cols = list(df.columns)
# 4. Build assignment mapping via explicit iteration
assignments = {}
if direction == 'A to B':
# Models in rows → Texters as rows
for model in df.index.astype(str):
for day in day_cols:
cell = df.at[model, day]
# Handle NaN values properly
if pd.isna(cell):
continue
for texter in str(cell).split(','):
texter = texter.strip()
if not texter or texter.lower() in ['nan', 'none', '']:
continue
assignments.setdefault(texter, {d: [] for d in day_cols})
assignments[texter][day].append(model)
if not assignments: # Handle empty assignments
result = pd.DataFrame(columns=day_cols)
first_col_name = 'Texter'
else:
index = sorted(assignments.keys())
result = pd.DataFrame(index=index, columns=day_cols)
first_col_name = 'Texter'
for texter, days_map in assignments.items():
for day in day_cols:
models = days_map.get(day, [])
result.at[texter, day] = ', '.join(models) if models else 'OFF'
else:
# Texters in rows → Models as rows
for texter in df.index.astype(str):
for day in day_cols:
cell = df.at[texter, day]
# Handle NaN values properly
if pd.isna(cell):
continue
for model in str(cell).split(','):
model = model.strip()
if not model or model.lower() in ['nan', 'none', '']:
continue
assignments.setdefault(model, {d: [] for d in day_cols})
assignments[model][day].append(texter)
if not assignments: # Handle empty assignments
result = pd.DataFrame(columns=day_cols)
first_col_name = 'Model'
else:
index = sorted(assignments.keys())
result = pd.DataFrame(index=index, columns=day_cols)
first_col_name = 'Model'
for model, days_map in assignments.items():
for day in day_cols:
texters = days_map.get(day, [])
result.at[model, day] = ', '.join(texters) if texters else 'OFF'
# 5. Cleanup axis names
result.index.name = None
result.columns.name = None
# For display, include index as a column
display_df = result.reset_index().rename(columns={'index': first_col_name})
# 6. Save to Excel for download with better error handling
output_filename = f"converted_{uuid.uuid4().hex}.xlsx"
# Clean the DataFrame before saving
result_clean = result.copy()
# Replace any problematic values
result_clean = result_clean.fillna('OFF') # Fill NaN with 'OFF'
# Ensure all values are strings to avoid Excel compatibility issues
for col in result_clean.columns:
result_clean[col] = result_clean[col].astype(str)
# Save with additional parameters for better compatibility
with pd.ExcelWriter(output_filename, engine='openpyxl', mode='w') as writer:
result_clean.to_excel(writer, sheet_name='Schedule', index=True, header=True)
# Return both DataFrame and download path
return display_df, output_filename
except Exception as e:
# Return error information
error_df = pd.DataFrame({'Error': [f"Error processing file: {str(e)}"]})
return error_df, None
# Build Gradio interface and launch immediately for Hugging Face Spaces
iface = gr.Interface(
fn=convert_schedule,
inputs=[
gr.File(label='Upload Weekly Schedule (.xlsx)', file_count='single', type='filepath'),
gr.Radio(['A to B', 'B to A'], label='Convert Direction', value='A to B') # Added default value
],
outputs=[
gr.Dataframe(label='Converted Schedule'),
gr.File(label='Download Converted Excel')
],
title='7-Day Schedule Converter',
description=(
'Upload a 7-column weekly schedule (Models vs Days) with merged or single headers, '
'then flip between Models→Texters or Texters→Models. Download the result as .xlsx.'
),
flagging_mode='never'
)
# Launch on 0.0.0.0:7860 for Spaces
if __name__ == "__main__":
iface.launch(server_name='0.0.0.0', server_port=7860) |