Spaces:
Sleeping
Sleeping
| # A unified script for inference process | |
| # Make adjustments inside functions, and consider both gradio and cli scripts if need to change func output format | |
| import re | |
| import tempfile | |
| import numpy as np | |
| import torch | |
| import torchaudio | |
| import tqdm | |
| from pydub import AudioSegment, silence | |
| from transformers import pipeline | |
| from vocos import Vocos | |
| from model import CFM | |
| from model.utils import ( | |
| load_checkpoint, | |
| get_tokenizer, | |
| convert_char_to_pinyin, | |
| ) | |
| device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" | |
| print(f"Using {device} device") | |
| vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz") | |
| # ----------------------------------------- | |
| target_sample_rate = 24000 | |
| n_mel_channels = 100 | |
| hop_length = 256 | |
| target_rms = 0.1 | |
| cross_fade_duration = 0.15 | |
| ode_method = "euler" | |
| nfe_step = 32 # 16, 32 | |
| cfg_strength = 2.0 | |
| sway_sampling_coef = -1.0 | |
| speed = 1.0 | |
| fix_duration = None | |
| # ----------------------------------------- | |
| # chunk text into smaller pieces | |
| def chunk_text(text, max_chars=135): | |
| """ | |
| Splits the input text into chunks, each with a maximum number of characters. | |
| Args: | |
| text (str): The text to be split. | |
| max_chars (int): The maximum number of characters per chunk. | |
| Returns: | |
| List[str]: A list of text chunks. | |
| """ | |
| chunks = [] | |
| current_chunk = "" | |
| # Split the text into sentences based on punctuation followed by whitespace | |
| sentences = re.split(r"(?<=[;:,.!?])\s+|(?<=[;:,。!?])", text) | |
| for sentence in sentences: | |
| if len(current_chunk.encode("utf-8")) + len(sentence.encode("utf-8")) <= max_chars: | |
| current_chunk += sentence + " " if sentence and len(sentence[-1].encode("utf-8")) == 1 else sentence | |
| else: | |
| if current_chunk: | |
| chunks.append(current_chunk.strip()) | |
| current_chunk = sentence + " " if sentence and len(sentence[-1].encode("utf-8")) == 1 else sentence | |
| if current_chunk: | |
| chunks.append(current_chunk.strip()) | |
| return chunks | |
| # load vocoder | |
| def load_vocoder(is_local=False, local_path="", device=device): | |
| if is_local: | |
| print(f"Load vocos from local path {local_path}") | |
| vocos = Vocos.from_hparams(f"{local_path}/config.yaml") | |
| state_dict = torch.load(f"{local_path}/pytorch_model.bin", map_location=device) | |
| vocos.load_state_dict(state_dict) | |
| vocos.eval() | |
| else: | |
| print("Download Vocos from huggingface charactr/vocos-mel-24khz") | |
| vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz") | |
| return vocos | |
| # load asr pipeline | |
| asr_pipe = None | |
| def initialize_asr_pipeline(device=device): | |
| global asr_pipe | |
| asr_pipe = pipeline( | |
| "automatic-speech-recognition", | |
| model="openai/whisper-large-v3-turbo", | |
| torch_dtype=torch.float16, | |
| device=device, | |
| ) | |
| # load model for inference | |
| def load_model(model_cls, model_cfg, ckpt_path, vocab_file="", ode_method=ode_method, use_ema=True, device=device): | |
| if vocab_file == "": | |
| vocab_file = "Emilia_ZH_EN" | |
| tokenizer = "pinyin" | |
| else: | |
| tokenizer = "custom" | |
| print("\nvocab : ", vocab_file) | |
| print("tokenizer : ", tokenizer) | |
| print("model : ", ckpt_path, "\n") | |
| vocab_char_map, vocab_size = get_tokenizer(vocab_file, tokenizer) | |
| model = CFM( | |
| transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels), | |
| mel_spec_kwargs=dict( | |
| target_sample_rate=target_sample_rate, | |
| n_mel_channels=n_mel_channels, | |
| hop_length=hop_length, | |
| ), | |
| odeint_kwargs=dict( | |
| method=ode_method, | |
| ), | |
| vocab_char_map=vocab_char_map, | |
| ).to(device) | |
| model = load_checkpoint(model, ckpt_path, device, use_ema=use_ema) | |
| return model | |
| # preprocess reference audio and text | |
| def preprocess_ref_audio_text(ref_audio_orig, ref_text, show_info=print, device=device): | |
| show_info("Converting audio...") | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f: | |
| aseg = AudioSegment.from_file(ref_audio_orig) | |
| non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=1000) | |
| non_silent_wave = AudioSegment.silent(duration=0) | |
| for non_silent_seg in non_silent_segs: | |
| non_silent_wave += non_silent_seg | |
| aseg = non_silent_wave | |
| audio_duration = len(aseg) | |
| if audio_duration > 15000: | |
| show_info("Audio is over 15s, clipping to only first 15s.") | |
| aseg = aseg[:15000] | |
| aseg.export(f.name, format="wav") | |
| ref_audio = f.name | |
| if not ref_text.strip(): | |
| global asr_pipe | |
| if asr_pipe is None: | |
| initialize_asr_pipeline(device=device) | |
| show_info("No reference text provided, transcribing reference audio...") | |
| ref_text = asr_pipe( | |
| ref_audio, | |
| chunk_length_s=30, | |
| batch_size=128, | |
| generate_kwargs={"task": "transcribe"}, | |
| return_timestamps=False, | |
| )["text"].strip() | |
| show_info("Finished transcription") | |
| else: | |
| show_info("Using custom reference text...") | |
| # Add the functionality to ensure it ends with ". " | |
| if not ref_text.endswith(". ") and not ref_text.endswith("。"): | |
| if ref_text.endswith("."): | |
| ref_text += " " | |
| else: | |
| ref_text += ". " | |
| return ref_audio, ref_text | |
| # infer process: chunk text -> infer batches [i.e. infer_batch_process()] | |
| def infer_process( | |
| ref_audio, | |
| ref_text, | |
| gen_text, | |
| model_obj, | |
| show_info=print, | |
| progress=tqdm, | |
| target_rms=target_rms, | |
| cross_fade_duration=cross_fade_duration, | |
| nfe_step=nfe_step, | |
| cfg_strength=cfg_strength, | |
| sway_sampling_coef=sway_sampling_coef, | |
| speed=speed, | |
| fix_duration=fix_duration, | |
| ): | |
| # Split the input text into batches | |
| audio, sr = torchaudio.load(ref_audio) | |
| max_chars = int(len(ref_text.encode("utf-8")) / (audio.shape[-1] / sr) * (25 - audio.shape[-1] / sr)) | |
| gen_text_batches = chunk_text(gen_text, max_chars=max_chars) | |
| for i, gen_text in enumerate(gen_text_batches): | |
| print(f"gen_text {i}", gen_text) | |
| show_info(f"Generating audio in {len(gen_text_batches)} batches...") | |
| return infer_batch_process( | |
| (audio, sr), | |
| ref_text, | |
| gen_text_batches, | |
| model_obj, | |
| progress=progress, | |
| target_rms=target_rms, | |
| cross_fade_duration=cross_fade_duration, | |
| nfe_step=nfe_step, | |
| cfg_strength=cfg_strength, | |
| sway_sampling_coef=sway_sampling_coef, | |
| speed=speed, | |
| fix_duration=fix_duration, | |
| ) | |
| # infer batches | |
| def infer_batch_process( | |
| ref_audio, | |
| ref_text, | |
| gen_text_batches, | |
| model_obj, | |
| progress=tqdm, | |
| target_rms=0.1, | |
| cross_fade_duration=0.15, | |
| nfe_step=32, | |
| cfg_strength=2.0, | |
| sway_sampling_coef=-1, | |
| speed=1, | |
| fix_duration=None, | |
| ): | |
| audio, sr = ref_audio | |
| if audio.shape[0] > 1: | |
| audio = torch.mean(audio, dim=0, keepdim=True) | |
| rms = torch.sqrt(torch.mean(torch.square(audio))) | |
| if rms < target_rms: | |
| audio = audio * target_rms / rms | |
| if sr != target_sample_rate: | |
| resampler = torchaudio.transforms.Resample(sr, target_sample_rate) | |
| audio = resampler(audio) | |
| audio = audio.to(device) | |
| generated_waves = [] | |
| spectrograms = [] | |
| if len(ref_text[-1].encode("utf-8")) == 1: | |
| ref_text = ref_text + " " | |
| for i, gen_text in enumerate(progress.tqdm(gen_text_batches)): | |
| # Prepare the text | |
| text_list = [ref_text + gen_text] | |
| final_text_list = convert_char_to_pinyin(text_list) | |
| ref_audio_len = audio.shape[-1] // hop_length | |
| if fix_duration is not None: | |
| duration = int(fix_duration * target_sample_rate / hop_length) | |
| else: | |
| # Calculate duration | |
| ref_text_len = len(ref_text.encode("utf-8")) | |
| gen_text_len = len(gen_text.encode("utf-8")) | |
| duration = ref_audio_len + int(ref_audio_len / ref_text_len * gen_text_len / speed) | |
| # inference | |
| with torch.inference_mode(): | |
| generated, _ = model_obj.sample( | |
| cond=audio, | |
| text=final_text_list, | |
| duration=duration, | |
| steps=nfe_step, | |
| cfg_strength=cfg_strength, | |
| sway_sampling_coef=sway_sampling_coef, | |
| ) | |
| generated = generated.to(torch.float32) | |
| generated = generated[:, ref_audio_len:, :] | |
| generated_mel_spec = generated.permute(0, 2, 1) | |
| generated_wave = vocos.decode(generated_mel_spec.cpu()) | |
| if rms < target_rms: | |
| generated_wave = generated_wave * rms / target_rms | |
| # wav -> numpy | |
| generated_wave = generated_wave.squeeze().cpu().numpy() | |
| generated_waves.append(generated_wave) | |
| spectrograms.append(generated_mel_spec[0].cpu().numpy()) | |
| # Combine all generated waves with cross-fading | |
| if cross_fade_duration <= 0: | |
| # Simply concatenate | |
| final_wave = np.concatenate(generated_waves) | |
| else: | |
| final_wave = generated_waves[0] | |
| for i in range(1, len(generated_waves)): | |
| prev_wave = final_wave | |
| next_wave = generated_waves[i] | |
| # Calculate cross-fade samples, ensuring it does not exceed wave lengths | |
| cross_fade_samples = int(cross_fade_duration * target_sample_rate) | |
| cross_fade_samples = min(cross_fade_samples, len(prev_wave), len(next_wave)) | |
| if cross_fade_samples <= 0: | |
| # No overlap possible, concatenate | |
| final_wave = np.concatenate([prev_wave, next_wave]) | |
| continue | |
| # Overlapping parts | |
| prev_overlap = prev_wave[-cross_fade_samples:] | |
| next_overlap = next_wave[:cross_fade_samples] | |
| # Fade out and fade in | |
| fade_out = np.linspace(1, 0, cross_fade_samples) | |
| fade_in = np.linspace(0, 1, cross_fade_samples) | |
| # Cross-faded overlap | |
| cross_faded_overlap = prev_overlap * fade_out + next_overlap * fade_in | |
| # Combine | |
| new_wave = np.concatenate( | |
| [prev_wave[:-cross_fade_samples], cross_faded_overlap, next_wave[cross_fade_samples:]] | |
| ) | |
| final_wave = new_wave | |
| # Create a combined spectrogram | |
| combined_spectrogram = np.concatenate(spectrograms, axis=1) | |
| return final_wave, target_sample_rate, combined_spectrogram | |
| # remove silence from generated wav | |
| def remove_silence_for_generated_wav(filename): | |
| aseg = AudioSegment.from_file(filename) | |
| non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=500) | |
| non_silent_wave = AudioSegment.silent(duration=0) | |
| for non_silent_seg in non_silent_segs: | |
| non_silent_wave += non_silent_seg | |
| aseg = non_silent_wave | |
| aseg.export(filename, format="wav") | |