Spaces:
Sleeping
Sleeping
| # just for speaker similarity evaluation, third-party code | |
| # From https://github.com/microsoft/UniSpeech/blob/main/downstreams/speaker_verification/models/ | |
| # part of the code is borrowed from https://github.com/lawlict/ECAPA-TDNN | |
| import os | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| """ Res2Conv1d + BatchNorm1d + ReLU | |
| """ | |
| class Res2Conv1dReluBn(nn.Module): | |
| """ | |
| in_channels == out_channels == channels | |
| """ | |
| def __init__(self, channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=True, scale=4): | |
| super().__init__() | |
| assert channels % scale == 0, "{} % {} != 0".format(channels, scale) | |
| self.scale = scale | |
| self.width = channels // scale | |
| self.nums = scale if scale == 1 else scale - 1 | |
| self.convs = [] | |
| self.bns = [] | |
| for i in range(self.nums): | |
| self.convs.append(nn.Conv1d(self.width, self.width, kernel_size, stride, padding, dilation, bias=bias)) | |
| self.bns.append(nn.BatchNorm1d(self.width)) | |
| self.convs = nn.ModuleList(self.convs) | |
| self.bns = nn.ModuleList(self.bns) | |
| def forward(self, x): | |
| out = [] | |
| spx = torch.split(x, self.width, 1) | |
| for i in range(self.nums): | |
| if i == 0: | |
| sp = spx[i] | |
| else: | |
| sp = sp + spx[i] | |
| # Order: conv -> relu -> bn | |
| sp = self.convs[i](sp) | |
| sp = self.bns[i](F.relu(sp)) | |
| out.append(sp) | |
| if self.scale != 1: | |
| out.append(spx[self.nums]) | |
| out = torch.cat(out, dim=1) | |
| return out | |
| """ Conv1d + BatchNorm1d + ReLU | |
| """ | |
| class Conv1dReluBn(nn.Module): | |
| def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=True): | |
| super().__init__() | |
| self.conv = nn.Conv1d(in_channels, out_channels, kernel_size, stride, padding, dilation, bias=bias) | |
| self.bn = nn.BatchNorm1d(out_channels) | |
| def forward(self, x): | |
| return self.bn(F.relu(self.conv(x))) | |
| """ The SE connection of 1D case. | |
| """ | |
| class SE_Connect(nn.Module): | |
| def __init__(self, channels, se_bottleneck_dim=128): | |
| super().__init__() | |
| self.linear1 = nn.Linear(channels, se_bottleneck_dim) | |
| self.linear2 = nn.Linear(se_bottleneck_dim, channels) | |
| def forward(self, x): | |
| out = x.mean(dim=2) | |
| out = F.relu(self.linear1(out)) | |
| out = torch.sigmoid(self.linear2(out)) | |
| out = x * out.unsqueeze(2) | |
| return out | |
| """ SE-Res2Block of the ECAPA-TDNN architecture. | |
| """ | |
| # def SE_Res2Block(channels, kernel_size, stride, padding, dilation, scale): | |
| # return nn.Sequential( | |
| # Conv1dReluBn(channels, 512, kernel_size=1, stride=1, padding=0), | |
| # Res2Conv1dReluBn(512, kernel_size, stride, padding, dilation, scale=scale), | |
| # Conv1dReluBn(512, channels, kernel_size=1, stride=1, padding=0), | |
| # SE_Connect(channels) | |
| # ) | |
| class SE_Res2Block(nn.Module): | |
| def __init__(self, in_channels, out_channels, kernel_size, stride, padding, dilation, scale, se_bottleneck_dim): | |
| super().__init__() | |
| self.Conv1dReluBn1 = Conv1dReluBn(in_channels, out_channels, kernel_size=1, stride=1, padding=0) | |
| self.Res2Conv1dReluBn = Res2Conv1dReluBn(out_channels, kernel_size, stride, padding, dilation, scale=scale) | |
| self.Conv1dReluBn2 = Conv1dReluBn(out_channels, out_channels, kernel_size=1, stride=1, padding=0) | |
| self.SE_Connect = SE_Connect(out_channels, se_bottleneck_dim) | |
| self.shortcut = None | |
| if in_channels != out_channels: | |
| self.shortcut = nn.Conv1d( | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| kernel_size=1, | |
| ) | |
| def forward(self, x): | |
| residual = x | |
| if self.shortcut: | |
| residual = self.shortcut(x) | |
| x = self.Conv1dReluBn1(x) | |
| x = self.Res2Conv1dReluBn(x) | |
| x = self.Conv1dReluBn2(x) | |
| x = self.SE_Connect(x) | |
| return x + residual | |
| """ Attentive weighted mean and standard deviation pooling. | |
| """ | |
| class AttentiveStatsPool(nn.Module): | |
| def __init__(self, in_dim, attention_channels=128, global_context_att=False): | |
| super().__init__() | |
| self.global_context_att = global_context_att | |
| # Use Conv1d with stride == 1 rather than Linear, then we don't need to transpose inputs. | |
| if global_context_att: | |
| self.linear1 = nn.Conv1d(in_dim * 3, attention_channels, kernel_size=1) # equals W and b in the paper | |
| else: | |
| self.linear1 = nn.Conv1d(in_dim, attention_channels, kernel_size=1) # equals W and b in the paper | |
| self.linear2 = nn.Conv1d(attention_channels, in_dim, kernel_size=1) # equals V and k in the paper | |
| def forward(self, x): | |
| if self.global_context_att: | |
| context_mean = torch.mean(x, dim=-1, keepdim=True).expand_as(x) | |
| context_std = torch.sqrt(torch.var(x, dim=-1, keepdim=True) + 1e-10).expand_as(x) | |
| x_in = torch.cat((x, context_mean, context_std), dim=1) | |
| else: | |
| x_in = x | |
| # DON'T use ReLU here! In experiments, I find ReLU hard to converge. | |
| alpha = torch.tanh(self.linear1(x_in)) | |
| # alpha = F.relu(self.linear1(x_in)) | |
| alpha = torch.softmax(self.linear2(alpha), dim=2) | |
| mean = torch.sum(alpha * x, dim=2) | |
| residuals = torch.sum(alpha * (x**2), dim=2) - mean**2 | |
| std = torch.sqrt(residuals.clamp(min=1e-9)) | |
| return torch.cat([mean, std], dim=1) | |
| class ECAPA_TDNN(nn.Module): | |
| def __init__( | |
| self, | |
| feat_dim=80, | |
| channels=512, | |
| emb_dim=192, | |
| global_context_att=False, | |
| feat_type="wavlm_large", | |
| sr=16000, | |
| feature_selection="hidden_states", | |
| update_extract=False, | |
| config_path=None, | |
| ): | |
| super().__init__() | |
| self.feat_type = feat_type | |
| self.feature_selection = feature_selection | |
| self.update_extract = update_extract | |
| self.sr = sr | |
| torch.hub._validate_not_a_forked_repo = lambda a, b, c: True | |
| try: | |
| local_s3prl_path = os.path.expanduser("~/.cache/torch/hub/s3prl_s3prl_main") | |
| self.feature_extract = torch.hub.load(local_s3prl_path, feat_type, source="local", config_path=config_path) | |
| except: # noqa: E722 | |
| self.feature_extract = torch.hub.load("s3prl/s3prl", feat_type) | |
| if len(self.feature_extract.model.encoder.layers) == 24 and hasattr( | |
| self.feature_extract.model.encoder.layers[23].self_attn, "fp32_attention" | |
| ): | |
| self.feature_extract.model.encoder.layers[23].self_attn.fp32_attention = False | |
| if len(self.feature_extract.model.encoder.layers) == 24 and hasattr( | |
| self.feature_extract.model.encoder.layers[11].self_attn, "fp32_attention" | |
| ): | |
| self.feature_extract.model.encoder.layers[11].self_attn.fp32_attention = False | |
| self.feat_num = self.get_feat_num() | |
| self.feature_weight = nn.Parameter(torch.zeros(self.feat_num)) | |
| if feat_type != "fbank" and feat_type != "mfcc": | |
| freeze_list = ["final_proj", "label_embs_concat", "mask_emb", "project_q", "quantizer"] | |
| for name, param in self.feature_extract.named_parameters(): | |
| for freeze_val in freeze_list: | |
| if freeze_val in name: | |
| param.requires_grad = False | |
| break | |
| if not self.update_extract: | |
| for param in self.feature_extract.parameters(): | |
| param.requires_grad = False | |
| self.instance_norm = nn.InstanceNorm1d(feat_dim) | |
| # self.channels = [channels] * 4 + [channels * 3] | |
| self.channels = [channels] * 4 + [1536] | |
| self.layer1 = Conv1dReluBn(feat_dim, self.channels[0], kernel_size=5, padding=2) | |
| self.layer2 = SE_Res2Block( | |
| self.channels[0], | |
| self.channels[1], | |
| kernel_size=3, | |
| stride=1, | |
| padding=2, | |
| dilation=2, | |
| scale=8, | |
| se_bottleneck_dim=128, | |
| ) | |
| self.layer3 = SE_Res2Block( | |
| self.channels[1], | |
| self.channels[2], | |
| kernel_size=3, | |
| stride=1, | |
| padding=3, | |
| dilation=3, | |
| scale=8, | |
| se_bottleneck_dim=128, | |
| ) | |
| self.layer4 = SE_Res2Block( | |
| self.channels[2], | |
| self.channels[3], | |
| kernel_size=3, | |
| stride=1, | |
| padding=4, | |
| dilation=4, | |
| scale=8, | |
| se_bottleneck_dim=128, | |
| ) | |
| # self.conv = nn.Conv1d(self.channels[-1], self.channels[-1], kernel_size=1) | |
| cat_channels = channels * 3 | |
| self.conv = nn.Conv1d(cat_channels, self.channels[-1], kernel_size=1) | |
| self.pooling = AttentiveStatsPool( | |
| self.channels[-1], attention_channels=128, global_context_att=global_context_att | |
| ) | |
| self.bn = nn.BatchNorm1d(self.channels[-1] * 2) | |
| self.linear = nn.Linear(self.channels[-1] * 2, emb_dim) | |
| def get_feat_num(self): | |
| self.feature_extract.eval() | |
| wav = [torch.randn(self.sr).to(next(self.feature_extract.parameters()).device)] | |
| with torch.no_grad(): | |
| features = self.feature_extract(wav) | |
| select_feature = features[self.feature_selection] | |
| if isinstance(select_feature, (list, tuple)): | |
| return len(select_feature) | |
| else: | |
| return 1 | |
| def get_feat(self, x): | |
| if self.update_extract: | |
| x = self.feature_extract([sample for sample in x]) | |
| else: | |
| with torch.no_grad(): | |
| if self.feat_type == "fbank" or self.feat_type == "mfcc": | |
| x = self.feature_extract(x) + 1e-6 # B x feat_dim x time_len | |
| else: | |
| x = self.feature_extract([sample for sample in x]) | |
| if self.feat_type == "fbank": | |
| x = x.log() | |
| if self.feat_type != "fbank" and self.feat_type != "mfcc": | |
| x = x[self.feature_selection] | |
| if isinstance(x, (list, tuple)): | |
| x = torch.stack(x, dim=0) | |
| else: | |
| x = x.unsqueeze(0) | |
| norm_weights = F.softmax(self.feature_weight, dim=-1).unsqueeze(-1).unsqueeze(-1).unsqueeze(-1) | |
| x = (norm_weights * x).sum(dim=0) | |
| x = torch.transpose(x, 1, 2) + 1e-6 | |
| x = self.instance_norm(x) | |
| return x | |
| def forward(self, x): | |
| x = self.get_feat(x) | |
| out1 = self.layer1(x) | |
| out2 = self.layer2(out1) | |
| out3 = self.layer3(out2) | |
| out4 = self.layer4(out3) | |
| out = torch.cat([out2, out3, out4], dim=1) | |
| out = F.relu(self.conv(out)) | |
| out = self.bn(self.pooling(out)) | |
| out = self.linear(out) | |
| return out | |
| def ECAPA_TDNN_SMALL( | |
| feat_dim, | |
| emb_dim=256, | |
| feat_type="wavlm_large", | |
| sr=16000, | |
| feature_selection="hidden_states", | |
| update_extract=False, | |
| config_path=None, | |
| ): | |
| return ECAPA_TDNN( | |
| feat_dim=feat_dim, | |
| channels=512, | |
| emb_dim=emb_dim, | |
| feat_type=feat_type, | |
| sr=sr, | |
| feature_selection=feature_selection, | |
| update_extract=update_extract, | |
| config_path=config_path, | |
| ) | |