kpfadnis's picture
chore (maintainance): Update depdencies, copyright and minimal support for chat template.
e23b66d
raw
history blame
2.45 kB
/**
*
* Copyright 2023-2025 InspectorRAGet Team
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
**/
class ConfusionMatrix {
private matrix: number[][];
private headers: any[];
constructor(headers: any[]) {
this.headers = headers;
this.matrix = Array(headers.length)
.fill(0)
.map((row) => new Array(headers.length).fill(0));
}
addToElement(val1, val2) {
const row: number = this.headers.indexOf(val1);
const col: number = this.headers.indexOf(val2);
this.matrix[row][col] += 1;
}
diagonalSum() {
const size = this.matrix.length;
let diagSum = 0;
for (let i = 0; i < size; i++) {
for (let j = 0; j < size; j++) {
if (i === j) {
diagSum += this.matrix[i][j];
}
}
}
return diagSum;
}
rowSum(index: number) {
let rowSum = 0;
for (let i = 0; i < this.matrix.length; i++) {
rowSum += this.matrix[index][i];
}
return rowSum;
}
columnSum(index: number) {
let columnSum = 0;
for (let i = 0; i < this.matrix.length; i++) {
columnSum += this.matrix[i][index];
}
return columnSum;
}
cohenKappaScore() {
const size = this.matrix.length;
let rowSums: number[] = [];
let columnSums: number[] = [];
for (let i = 0; i < this.matrix.length; i++) {
rowSums.push(this.rowSum(i));
columnSums.push(this.columnSum(i));
}
const total = rowSums.reduce((total, v) => (total = total + v), 0);
if (total > 0) {
const p_o = this.diagonalSum() / total;
let p_e = 0;
for (let i = 0; i < this.matrix.length; i++) {
// sum of multiplications of respective columns and rows
p_e += (rowSums[i] / total) * (columnSums[i] / total);
}
if (p_e < 1) {
const cohen_kappa_score = (p_o - p_e) / (1 - p_e);
return cohen_kappa_score;
}
}
return null;
}
}
export default ConfusionMatrix;