Spaces:
Running
Running
/** | |
* | |
* Copyright 2023-2025 InspectorRAGet Team | |
* | |
* Licensed under the Apache License, Version 2.0 (the "License"); | |
* you may not use this file except in compliance with the License. | |
* You may obtain a copy of the License at | |
* | |
* http://www.apache.org/licenses/LICENSE-2.0 | |
* | |
* Unless required by applicable law or agreed to in writing, software | |
* distributed under the License is distributed on an "AS IS" BASIS, | |
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
* See the License for the specific language governing permissions and | |
* limitations under the License. | |
* | |
**/ | |
class ConfusionMatrix { | |
private matrix: number[][]; | |
private headers: any[]; | |
constructor(headers: any[]) { | |
this.headers = headers; | |
this.matrix = Array(headers.length) | |
.fill(0) | |
.map((row) => new Array(headers.length).fill(0)); | |
} | |
addToElement(val1, val2) { | |
const row: number = this.headers.indexOf(val1); | |
const col: number = this.headers.indexOf(val2); | |
this.matrix[row][col] += 1; | |
} | |
diagonalSum() { | |
const size = this.matrix.length; | |
let diagSum = 0; | |
for (let i = 0; i < size; i++) { | |
for (let j = 0; j < size; j++) { | |
if (i === j) { | |
diagSum += this.matrix[i][j]; | |
} | |
} | |
} | |
return diagSum; | |
} | |
rowSum(index: number) { | |
let rowSum = 0; | |
for (let i = 0; i < this.matrix.length; i++) { | |
rowSum += this.matrix[index][i]; | |
} | |
return rowSum; | |
} | |
columnSum(index: number) { | |
let columnSum = 0; | |
for (let i = 0; i < this.matrix.length; i++) { | |
columnSum += this.matrix[i][index]; | |
} | |
return columnSum; | |
} | |
cohenKappaScore() { | |
const size = this.matrix.length; | |
let rowSums: number[] = []; | |
let columnSums: number[] = []; | |
for (let i = 0; i < this.matrix.length; i++) { | |
rowSums.push(this.rowSum(i)); | |
columnSums.push(this.columnSum(i)); | |
} | |
const total = rowSums.reduce((total, v) => (total = total + v), 0); | |
if (total > 0) { | |
const p_o = this.diagonalSum() / total; | |
let p_e = 0; | |
for (let i = 0; i < this.matrix.length; i++) { | |
// sum of multiplications of respective columns and rows | |
p_e += (rowSums[i] / total) * (columnSums[i] / total); | |
} | |
if (p_e < 1) { | |
const cohen_kappa_score = (p_o - p_e) / (1 - p_e); | |
return cohen_kappa_score; | |
} | |
} | |
return null; | |
} | |
} | |
export default ConfusionMatrix; | |