File size: 26,943 Bytes
bcb2553
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ragas demonstration\n",
    "\n",
    "This notebook demonstrates how to evaluate a RAG system using the [Ragas evaluation framework](https://github.com/explodinggradients/ragas?tab=readme-ov-file) and import the resulting evaluation results into InspectorRAGet for analysis.\n",
    "\n",
    "### Installation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Collecting git+https://github.com/explodinggradients/ragas\n",
      "  Cloning https://github.com/explodinggradients/ragas to /private/var/folders/l5/fj0t2qmn44x0r042xw6cjr8w0000gn/T/pip-req-build-k70llt1h\n",
      "  Running command git clone --filter=blob:none --quiet https://github.com/explodinggradients/ragas /private/var/folders/l5/fj0t2qmn44x0r042xw6cjr8w0000gn/T/pip-req-build-k70llt1h\n",
      "  Resolved https://github.com/explodinggradients/ragas to commit d2486f117fd827dcfc3e196d4cf7798573c55b09\n",
      "  Installing build dependencies ... \u001b[?25ldone\n",
      "\u001b[?25h  Getting requirements to build wheel ... \u001b[?25ldone\n",
      "\u001b[?25h  Preparing metadata (pyproject.toml) ... \u001b[?25ldone\n",
      "\u001b[?25hRequirement already satisfied: numpy in ./.venv/lib/python3.9/site-packages (from ragas==0.1.13) (1.26.4)\n",
      "Requirement already satisfied: datasets in ./.venv/lib/python3.9/site-packages (from ragas==0.1.13) (2.20.0)\n",
      "Requirement already satisfied: tiktoken in ./.venv/lib/python3.9/site-packages (from ragas==0.1.13) (0.7.0)\n",
      "Requirement already satisfied: langchain in ./.venv/lib/python3.9/site-packages (from ragas==0.1.13) (0.2.12)\n",
      "Requirement already satisfied: langchain-core in ./.venv/lib/python3.9/site-packages (from ragas==0.1.13) (0.2.28)\n",
      "Requirement already satisfied: langchain-community in ./.venv/lib/python3.9/site-packages (from ragas==0.1.13) (0.2.11)\n",
      "Requirement already satisfied: langchain-openai in ./.venv/lib/python3.9/site-packages (from ragas==0.1.13) (0.1.20)\n",
      "Requirement already satisfied: openai>1 in ./.venv/lib/python3.9/site-packages (from ragas==0.1.13) (1.39.0)\n",
      "Requirement already satisfied: pysbd>=0.3.4 in ./.venv/lib/python3.9/site-packages (from ragas==0.1.13) (0.3.4)\n",
      "Requirement already satisfied: nest-asyncio in ./.venv/lib/python3.9/site-packages (from ragas==0.1.13) (1.6.0)\n",
      "Requirement already satisfied: appdirs in ./.venv/lib/python3.9/site-packages (from ragas==0.1.13) (1.4.4)\n",
      "Requirement already satisfied: anyio<5,>=3.5.0 in ./.venv/lib/python3.9/site-packages (from openai>1->ragas==0.1.13) (4.4.0)\n",
      "Requirement already satisfied: distro<2,>=1.7.0 in ./.venv/lib/python3.9/site-packages (from openai>1->ragas==0.1.13) (1.9.0)\n",
      "Requirement already satisfied: httpx<1,>=0.23.0 in ./.venv/lib/python3.9/site-packages (from openai>1->ragas==0.1.13) (0.27.0)\n",
      "Requirement already satisfied: pydantic<3,>=1.9.0 in ./.venv/lib/python3.9/site-packages (from openai>1->ragas==0.1.13) (2.8.2)\n",
      "Requirement already satisfied: sniffio in ./.venv/lib/python3.9/site-packages (from openai>1->ragas==0.1.13) (1.3.1)\n",
      "Requirement already satisfied: tqdm>4 in ./.venv/lib/python3.9/site-packages (from openai>1->ragas==0.1.13) (4.66.5)\n",
      "Requirement already satisfied: typing-extensions<5,>=4.7 in ./.venv/lib/python3.9/site-packages (from openai>1->ragas==0.1.13) (4.12.2)\n",
      "Requirement already satisfied: filelock in ./.venv/lib/python3.9/site-packages (from datasets->ragas==0.1.13) (3.15.4)\n",
      "Requirement already satisfied: pyarrow>=15.0.0 in ./.venv/lib/python3.9/site-packages (from datasets->ragas==0.1.13) (17.0.0)\n",
      "Requirement already satisfied: pyarrow-hotfix in ./.venv/lib/python3.9/site-packages (from datasets->ragas==0.1.13) (0.6)\n",
      "Requirement already satisfied: dill<0.3.9,>=0.3.0 in ./.venv/lib/python3.9/site-packages (from datasets->ragas==0.1.13) (0.3.8)\n",
      "Requirement already satisfied: pandas in ./.venv/lib/python3.9/site-packages (from datasets->ragas==0.1.13) (2.2.2)\n",
      "Requirement already satisfied: requests>=2.32.2 in ./.venv/lib/python3.9/site-packages (from datasets->ragas==0.1.13) (2.32.3)\n",
      "Requirement already satisfied: xxhash in ./.venv/lib/python3.9/site-packages (from datasets->ragas==0.1.13) (3.4.1)\n",
      "Requirement already satisfied: multiprocess in ./.venv/lib/python3.9/site-packages (from datasets->ragas==0.1.13) (0.70.16)\n",
      "Requirement already satisfied: fsspec<=2024.5.0,>=2023.1.0 in ./.venv/lib/python3.9/site-packages (from fsspec[http]<=2024.5.0,>=2023.1.0->datasets->ragas==0.1.13) (2024.5.0)\n",
      "Requirement already satisfied: aiohttp in ./.venv/lib/python3.9/site-packages (from datasets->ragas==0.1.13) (3.10.1)\n",
      "Requirement already satisfied: huggingface-hub>=0.21.2 in ./.venv/lib/python3.9/site-packages (from datasets->ragas==0.1.13) (0.24.5)\n",
      "Requirement already satisfied: packaging in ./.venv/lib/python3.9/site-packages (from datasets->ragas==0.1.13) (24.1)\n",
      "Requirement already satisfied: pyyaml>=5.1 in ./.venv/lib/python3.9/site-packages (from datasets->ragas==0.1.13) (6.0.1)\n",
      "Requirement already satisfied: SQLAlchemy<3,>=1.4 in ./.venv/lib/python3.9/site-packages (from langchain->ragas==0.1.13) (2.0.32)\n",
      "Requirement already satisfied: async-timeout<5.0.0,>=4.0.0 in ./.venv/lib/python3.9/site-packages (from langchain->ragas==0.1.13) (4.0.3)\n",
      "Requirement already satisfied: langchain-text-splitters<0.3.0,>=0.2.0 in ./.venv/lib/python3.9/site-packages (from langchain->ragas==0.1.13) (0.2.2)\n",
      "Requirement already satisfied: langsmith<0.2.0,>=0.1.17 in ./.venv/lib/python3.9/site-packages (from langchain->ragas==0.1.13) (0.1.96)\n",
      "Requirement already satisfied: tenacity!=8.4.0,<9.0.0,>=8.1.0 in ./.venv/lib/python3.9/site-packages (from langchain->ragas==0.1.13) (8.5.0)\n",
      "Requirement already satisfied: jsonpatch<2.0,>=1.33 in ./.venv/lib/python3.9/site-packages (from langchain-core->ragas==0.1.13) (1.33)\n",
      "Requirement already satisfied: dataclasses-json<0.7,>=0.5.7 in ./.venv/lib/python3.9/site-packages (from langchain-community->ragas==0.1.13) (0.6.7)\n",
      "Requirement already satisfied: regex>=2022.1.18 in ./.venv/lib/python3.9/site-packages (from tiktoken->ragas==0.1.13) (2024.7.24)\n",
      "Requirement already satisfied: aiohappyeyeballs>=2.3.0 in ./.venv/lib/python3.9/site-packages (from aiohttp->datasets->ragas==0.1.13) (2.3.4)\n",
      "Requirement already satisfied: aiosignal>=1.1.2 in ./.venv/lib/python3.9/site-packages (from aiohttp->datasets->ragas==0.1.13) (1.3.1)\n",
      "Requirement already satisfied: attrs>=17.3.0 in ./.venv/lib/python3.9/site-packages (from aiohttp->datasets->ragas==0.1.13) (24.1.0)\n",
      "Requirement already satisfied: frozenlist>=1.1.1 in ./.venv/lib/python3.9/site-packages (from aiohttp->datasets->ragas==0.1.13) (1.4.1)\n",
      "Requirement already satisfied: multidict<7.0,>=4.5 in ./.venv/lib/python3.9/site-packages (from aiohttp->datasets->ragas==0.1.13) (6.0.5)\n",
      "Requirement already satisfied: yarl<2.0,>=1.0 in ./.venv/lib/python3.9/site-packages (from aiohttp->datasets->ragas==0.1.13) (1.9.4)\n",
      "Requirement already satisfied: idna>=2.8 in ./.venv/lib/python3.9/site-packages (from anyio<5,>=3.5.0->openai>1->ragas==0.1.13) (3.7)\n",
      "Requirement already satisfied: exceptiongroup>=1.0.2 in ./.venv/lib/python3.9/site-packages (from anyio<5,>=3.5.0->openai>1->ragas==0.1.13) (1.2.2)\n",
      "Requirement already satisfied: marshmallow<4.0.0,>=3.18.0 in ./.venv/lib/python3.9/site-packages (from dataclasses-json<0.7,>=0.5.7->langchain-community->ragas==0.1.13) (3.21.3)\n",
      "Requirement already satisfied: typing-inspect<1,>=0.4.0 in ./.venv/lib/python3.9/site-packages (from dataclasses-json<0.7,>=0.5.7->langchain-community->ragas==0.1.13) (0.9.0)\n",
      "Requirement already satisfied: certifi in ./.venv/lib/python3.9/site-packages (from httpx<1,>=0.23.0->openai>1->ragas==0.1.13) (2024.7.4)\n",
      "Requirement already satisfied: httpcore==1.* in ./.venv/lib/python3.9/site-packages (from httpx<1,>=0.23.0->openai>1->ragas==0.1.13) (1.0.5)\n",
      "Requirement already satisfied: h11<0.15,>=0.13 in ./.venv/lib/python3.9/site-packages (from httpcore==1.*->httpx<1,>=0.23.0->openai>1->ragas==0.1.13) (0.14.0)\n",
      "Requirement already satisfied: jsonpointer>=1.9 in ./.venv/lib/python3.9/site-packages (from jsonpatch<2.0,>=1.33->langchain-core->ragas==0.1.13) (3.0.0)\n",
      "Requirement already satisfied: orjson<4.0.0,>=3.9.14 in ./.venv/lib/python3.9/site-packages (from langsmith<0.2.0,>=0.1.17->langchain->ragas==0.1.13) (3.10.6)\n",
      "Requirement already satisfied: annotated-types>=0.4.0 in ./.venv/lib/python3.9/site-packages (from pydantic<3,>=1.9.0->openai>1->ragas==0.1.13) (0.7.0)\n",
      "Requirement already satisfied: pydantic-core==2.20.1 in ./.venv/lib/python3.9/site-packages (from pydantic<3,>=1.9.0->openai>1->ragas==0.1.13) (2.20.1)\n",
      "Requirement already satisfied: charset-normalizer<4,>=2 in ./.venv/lib/python3.9/site-packages (from requests>=2.32.2->datasets->ragas==0.1.13) (3.3.2)\n",
      "Requirement already satisfied: urllib3<3,>=1.21.1 in ./.venv/lib/python3.9/site-packages (from requests>=2.32.2->datasets->ragas==0.1.13) (2.2.2)\n",
      "Requirement already satisfied: greenlet!=0.4.17 in ./.venv/lib/python3.9/site-packages (from SQLAlchemy<3,>=1.4->langchain->ragas==0.1.13) (3.0.3)\n",
      "Requirement already satisfied: python-dateutil>=2.8.2 in ./.venv/lib/python3.9/site-packages (from pandas->datasets->ragas==0.1.13) (2.9.0.post0)\n",
      "Requirement already satisfied: pytz>=2020.1 in ./.venv/lib/python3.9/site-packages (from pandas->datasets->ragas==0.1.13) (2024.1)\n",
      "Requirement already satisfied: tzdata>=2022.7 in ./.venv/lib/python3.9/site-packages (from pandas->datasets->ragas==0.1.13) (2024.1)\n",
      "Requirement already satisfied: six>=1.5 in ./.venv/lib/python3.9/site-packages (from python-dateutil>=2.8.2->pandas->datasets->ragas==0.1.13) (1.16.0)\n",
      "Requirement already satisfied: mypy-extensions>=0.3.0 in ./.venv/lib/python3.9/site-packages (from typing-inspect<1,>=0.4.0->dataclasses-json<0.7,>=0.5.7->langchain-community->ragas==0.1.13) (1.0.0)\n"
     ]
    }
   ],
   "source": [
    "!pip install git+https://github.com/explodinggradients/ragas"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Requirement already satisfied: ipywidgets in ./.venv/lib/python3.9/site-packages (8.1.3)\n",
      "Requirement already satisfied: comm>=0.1.3 in ./.venv/lib/python3.9/site-packages (from ipywidgets) (0.2.2)\n",
      "Requirement already satisfied: ipython>=6.1.0 in ./.venv/lib/python3.9/site-packages (from ipywidgets) (8.18.1)\n",
      "Requirement already satisfied: traitlets>=4.3.1 in ./.venv/lib/python3.9/site-packages (from ipywidgets) (5.14.3)\n",
      "Requirement already satisfied: widgetsnbextension~=4.0.11 in ./.venv/lib/python3.9/site-packages (from ipywidgets) (4.0.11)\n",
      "Requirement already satisfied: jupyterlab-widgets~=3.0.11 in ./.venv/lib/python3.9/site-packages (from ipywidgets) (3.0.11)\n",
      "Requirement already satisfied: decorator in ./.venv/lib/python3.9/site-packages (from ipython>=6.1.0->ipywidgets) (5.1.1)\n",
      "Requirement already satisfied: jedi>=0.16 in ./.venv/lib/python3.9/site-packages (from ipython>=6.1.0->ipywidgets) (0.19.1)\n",
      "Requirement already satisfied: matplotlib-inline in ./.venv/lib/python3.9/site-packages (from ipython>=6.1.0->ipywidgets) (0.1.7)\n",
      "Requirement already satisfied: prompt-toolkit<3.1.0,>=3.0.41 in ./.venv/lib/python3.9/site-packages (from ipython>=6.1.0->ipywidgets) (3.0.47)\n",
      "Requirement already satisfied: pygments>=2.4.0 in ./.venv/lib/python3.9/site-packages (from ipython>=6.1.0->ipywidgets) (2.18.0)\n",
      "Requirement already satisfied: stack-data in ./.venv/lib/python3.9/site-packages (from ipython>=6.1.0->ipywidgets) (0.6.3)\n",
      "Requirement already satisfied: typing-extensions in ./.venv/lib/python3.9/site-packages (from ipython>=6.1.0->ipywidgets) (4.12.2)\n",
      "Requirement already satisfied: exceptiongroup in ./.venv/lib/python3.9/site-packages (from ipython>=6.1.0->ipywidgets) (1.2.2)\n",
      "Requirement already satisfied: pexpect>4.3 in ./.venv/lib/python3.9/site-packages (from ipython>=6.1.0->ipywidgets) (4.9.0)\n",
      "Requirement already satisfied: parso<0.9.0,>=0.8.3 in ./.venv/lib/python3.9/site-packages (from jedi>=0.16->ipython>=6.1.0->ipywidgets) (0.8.4)\n",
      "Requirement already satisfied: ptyprocess>=0.5 in ./.venv/lib/python3.9/site-packages (from pexpect>4.3->ipython>=6.1.0->ipywidgets) (0.7.0)\n",
      "Requirement already satisfied: wcwidth in ./.venv/lib/python3.9/site-packages (from prompt-toolkit<3.1.0,>=3.0.41->ipython>=6.1.0->ipywidgets) (0.2.13)\n",
      "Requirement already satisfied: executing>=1.2.0 in ./.venv/lib/python3.9/site-packages (from stack-data->ipython>=6.1.0->ipywidgets) (2.0.1)\n",
      "Requirement already satisfied: asttokens>=2.1.0 in ./.venv/lib/python3.9/site-packages (from stack-data->ipython>=6.1.0->ipywidgets) (2.4.1)\n",
      "Requirement already satisfied: pure-eval in ./.venv/lib/python3.9/site-packages (from stack-data->ipython>=6.1.0->ipywidgets) (0.2.3)\n",
      "Requirement already satisfied: six>=1.12.0 in ./.venv/lib/python3.9/site-packages (from asttokens>=2.1.0->stack-data->ipython>=6.1.0->ipywidgets) (1.16.0)\n"
     ]
    }
   ],
   "source": [
    "!pip install ipywidgets"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "from datasets import Dataset \n",
    "import os\n",
    "from ragas import evaluate\n",
    "from ragas.metrics import faithfulness, answer_relevancy, context_precision, context_recall"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "os.environ[\"RAGAS_DO_NOT_TRACK\"] = \"true\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Import dataset\n",
    "\n",
    "For this example, we will be using the sample dataset provided in Ragas' quick start instructions."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "data_samples = {\n",
    "    'question': ['When was the first super bowl?', 'Who won the most super bowls?'],\n",
    "    'answer': ['The first superbowl was held on Jan 15, 1967', 'The most super bowls have been won by The New England Patriots'],\n",
    "    'contexts' : [['The First AFL–NFL World Championship Game was an American football game played on January 15, 1967, at the Los Angeles Memorial Coliseum in Los Angeles,'], \n",
    "    ['The Green Bay Packers...Green Bay, Wisconsin.','The Packers compete...Football Conference']],\n",
    "    'ground_truth': ['The first superbowl was held on January 15, 1967', 'The New England Patriots have won the Super Bowl a record six times']\n",
    "}\n",
    "\n",
    "dataset = Dataset.from_dict(data_samples)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Run evaluation\n",
    "\n",
    "In this example, we run evaluation using `gpt-4o-mini` and the following Ragas evaluation metrics: faithfulness, answer relevance, context precision, and context recall. Consult the Ragas documentation on how to use different models or metrics.\n",
    "\n",
    "**Note: To use one of the OpenAI model for evaluation, you have to fill in your `OPENAI_API_KEY` below.** "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "os.environ[\"OPENAI_API_KEY\"] = \"provide-your-openai-api-key\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "d221210e378a4ad0a25748d8f8f095ba",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Evaluating:   0%|          | 0/8 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>question</th>\n",
       "      <th>answer</th>\n",
       "      <th>contexts</th>\n",
       "      <th>ground_truth</th>\n",
       "      <th>faithfulness</th>\n",
       "      <th>answer_relevancy</th>\n",
       "      <th>context_precision</th>\n",
       "      <th>context_recall</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>When was the first super bowl?</td>\n",
       "      <td>The first superbowl was held on Jan 15, 1967</td>\n",
       "      <td>[The First AFL–NFL World Championship Game was...</td>\n",
       "      <td>The first superbowl was held on January 15, 1967</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.980714</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>Who won the most super bowls?</td>\n",
       "      <td>The most super bowls have been won by The New ...</td>\n",
       "      <td>[The Green Bay Packers...Green Bay, Wisconsin....</td>\n",
       "      <td>The New England Patriots have won the Super Bo...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.943043</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                         question  \\\n",
       "0  When was the first super bowl?   \n",
       "1   Who won the most super bowls?   \n",
       "\n",
       "                                              answer  \\\n",
       "0       The first superbowl was held on Jan 15, 1967   \n",
       "1  The most super bowls have been won by The New ...   \n",
       "\n",
       "                                            contexts  \\\n",
       "0  [The First AFL–NFL World Championship Game was...   \n",
       "1  [The Green Bay Packers...Green Bay, Wisconsin....   \n",
       "\n",
       "                                        ground_truth  faithfulness  \\\n",
       "0   The first superbowl was held on January 15, 1967           1.0   \n",
       "1  The New England Patriots have won the Super Bo...           0.0   \n",
       "\n",
       "   answer_relevancy  context_precision  context_recall  \n",
       "0          0.980714                1.0             1.0  \n",
       "1          0.943043                0.0             0.0  "
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "from langchain_openai.chat_models import ChatOpenAI\n",
    "llm = ChatOpenAI(model=\"gpt-4o-mini\")\n",
    "\n",
    "score = evaluate(dataset,llm=llm, metrics=[faithfulness,answer_relevancy,context_precision,context_recall])\n",
    "df_score = score.to_pandas()\n",
    "\n",
    "display(df_score)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Create InspectorRAGet file"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We next generate the file for InspectorRAGet. We start by specifying the experiment metadata (experiment name, model, metrics)."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**Specify name of experiment**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "name = \"Ragas Demo\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**Specify name of model that produced the answers:** Since we do not know where the answers in the `data_samples` came from, we use a dummy name. In your experiments, replace this with the name of the model that produced the answers."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [],
   "source": [
    "# models -> List[dict]\n",
    "models = [\n",
    "    {\n",
    "        \"model_id\": \"model_a\",   # e.g., \"OpenAI/gpt-3.5-turbo\"\n",
    "        \"name\": \"Model A\",       # e.g., \"GPT-3.5-Turbo\"\n",
    "        \"owner\": \"Owner A\"       # e.g., \"OpenAI\"\n",
    "    }\n",
    "]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**Specify metrics used:** Ceate a record for each metric used in the Ragas evaluation. Note that the `name` of each metric below should match the name of the metric used in the data frame `df_score` output by Ragas."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "# metrics -> List[dict]\n",
    "all_metrics = [\n",
    "    {\n",
    "        \"name\": \"faithfulness\",\n",
    "        \"display_name\": \"Faithfulness\",\n",
    "        \"description\": \"Faithfulness\",\n",
    "        \"author\": \"algorithm\",\n",
    "        \"type\": \"numerical\",\n",
    "        \"aggregator\": \"average\",\n",
    "        \"range\": [0, 1.0, 0.1]\n",
    "    },\n",
    "    {\n",
    "        \"name\": \"answer_relevancy\",\n",
    "        \"display_name\": \"Answer Relevancy\",\n",
    "        \"description\": \"Answer Relevancy\",\n",
    "        \"author\": \"algorithm\",\n",
    "        \"type\": \"numerical\",\n",
    "        \"aggregator\": \"average\",\n",
    "        \"range\": [0, 1.0, 0.1]\n",
    "    },\n",
    "    {\n",
    "        \"name\": \"context_precision\",\n",
    "        \"display_name\": \"Context Precision\",\n",
    "        \"description\": \"Context Precision\",\n",
    "        \"author\": \"algorithm\",\n",
    "        \"type\": \"numerical\",\n",
    "        \"aggregator\": \"average\",\n",
    "        \"range\": [0, 1.0, 0.1]\n",
    "    },\n",
    "    {\n",
    "        \"name\": \"context_recall\",\n",
    "        \"display_name\": \"Context Recall\",\n",
    "        \"description\": \"Context Recall\",\n",
    "        \"author\": \"algorithm\",\n",
    "        \"type\": \"numerical\",\n",
    "        \"aggregator\": \"average\",\n",
    "        \"range\": [0, 1.0, 0.1]\n",
    "    }\n",
    "]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##### Compute document IDs"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [],
   "source": [
    "doc_id_counter = 0\n",
    "\n",
    "doc_text_to_id = {}\n",
    "for index, row in df_score.iterrows():\n",
    "    for c in row[\"contexts\"]:\n",
    "        if c not in doc_text_to_id:\n",
    "            doc_text_to_id[c] = doc_id_counter\n",
    "            doc_id_counter += 1"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##### Populate documents, tasks, and evaluations"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [],
   "source": [
    "all_documents = []\n",
    "all_tasks = []\n",
    "all_evaluations = []\n",
    "\n",
    "# Populate documents\n",
    "for doc_text, doc_id in doc_text_to_id.items():\n",
    "    document = {\n",
    "        \"document_id\": f\"{doc_id}\",\n",
    "        \"text\": f\"{doc_text}\"\n",
    "    }\n",
    "    all_documents.append(document)\n",
    "\n",
    "# Populate taks and evaluations\n",
    "for index, row in df_score.iterrows():\n",
    "    instance = {\n",
    "        \"task_id\": f\"{index}\",\n",
    "        \"task_type\": \"rag\",\n",
    "        \"contexts\": [ {\"document_id\": f\"{doc_text_to_id[c]}\"} for c in row[\"contexts\"] ],\n",
    "        \"input\": [{\"speaker\": \"user\", \"text\": f\"{row['question']}\"}],\n",
    "        \"targets\": [{\"text\": f\"{row['ground_truth']}\"}]\n",
    "    }\n",
    "    all_tasks.append(instance)\n",
    "\n",
    "    evaluation = {\n",
    "        \"task_id\": f\"{index}\",\n",
    "        \"model_id\": f\"{models[0]['model_id']}\",\n",
    "        \"model_response\": f\"{row['answer']}\",\n",
    "        \"annotations\": {}\n",
    "    }\n",
    "    for metric in all_metrics:\n",
    "        metric_name = metric[\"name\"]\n",
    "        evaluation[\"annotations\"][metric_name] = {\n",
    "            \"system\": {\n",
    "                \"value\": row[metric_name],\n",
    "                \"duration\": 0\n",
    "            }\n",
    "        }\n",
    "    all_evaluations.append(evaluation)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##### Write final json file to `ragas-inspectorraget-demo.json` in working directory"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [],
   "source": [
    "import json\n",
    "\n",
    "output = {\n",
    "    \"name\": name,\n",
    "    \"models\": models,\n",
    "    \"metrics\": all_metrics,\n",
    "    \"documents\": all_documents,\n",
    "    \"tasks\": all_tasks,\n",
    "    \"evaluations\": all_evaluations,\n",
    "}\n",
    "\n",
    "with open(\n",
    "    file=\"ragas-inspectorraget-demo.json\", mode=\"w\", encoding=\"utf-8\"\n",
    ") as fp:\n",
    "    json.dump(output, fp, indent=4)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "bin",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}