Spaces:
Running
Running
File size: 6,710 Bytes
599f646 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
/**
*
* Copyright 2023-2024 InspectorRAGet Team
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
**/
import { countBy, intersection, union, range } from 'lodash';
import {
Aggregator,
AggregationConfidenceLevels,
AggregationStatistics,
MetricValue,
} from '@/src/types';
import { castToNumber } from '@/src/utilities/metrics';
export const averageAggregator: Aggregator = {
name: 'averagae',
displayName: 'Average',
apply: (
scores: number[] | string[],
references: MetricValue[],
): AggregationStatistics => {
// Step 1: Cast score to numbers
const numericScores = scores.map((score) =>
typeof score === 'string' ? castToNumber(score, references) : score,
);
// Step 2: Calculate aggregate value & standard deviation
const mean = numericScores.reduce((a, b) => a + b) / numericScores.length;
const std = Math.sqrt(
numericScores
.map((score) => Math.pow(score - mean, 2))
.reduce((a, b) => a + b) / numericScores.length,
);
// Step 3: Calculate confidence level
const sorted_counter = Object.entries(countBy(scores));
const numberOfUniqueValues = sorted_counter.length;
const mostCommonValueCount = sorted_counter[0][1];
return {
value: Math.round((mean + Number.EPSILON) * 100) / 100,
std: Math.round((std + Number.EPSILON) * 100) / 100,
confidence:
mostCommonValueCount === scores.length
? AggregationConfidenceLevels.HIGH
: numberOfUniqueValues === scores.length
? AggregationConfidenceLevels.LOW
: AggregationConfidenceLevels.MEDIUM,
};
},
};
export const majorityAggregator: Aggregator = {
name: 'majority',
displayName: 'Majority',
apply: (
scores: number[] | string[],
references: MetricValue[],
): AggregationStatistics => {
// Step 0: Create counter
const counter: { [key: string]: number } = countBy(scores);
// Step 1: Sort counter values
const sorted_counter = Object.entries(counter);
sorted_counter.sort((x, y) => {
return y[1] - x[1];
});
// Step 2: Number of unique values, most common value and its count
const numberOfAnnotators = scores.length;
const numberOfUniqueValues = sorted_counter.length;
const mostCommonValue = sorted_counter[0][0];
const mostCommonValueCount = sorted_counter[0][1];
// Step 3: Initialize defaults for aggregate value, standard deviation and confidence level
let value = 'Indeterminate';
let confidence = AggregationConfidenceLevels.LOW;
// Step 3.a: Cast score to numbers
const numericScores = scores.map((score) =>
typeof score === 'string' ? castToNumber(score, references) : score,
);
// Step 2: Calculate aggregate value & standard deviation
const mean = numericScores.reduce((a, b) => a + b) / numericScores.length;
const std = Math.sqrt(
numericScores
.map((score) => Math.pow(score - mean, 2))
.reduce((a, b) => a + b) / numericScores.length,
);
// Step 3: Calculate aggregate value, standard deviation and confidence level
if (mostCommonValueCount === numberOfAnnotators) {
value = mostCommonValue;
confidence = AggregationConfidenceLevels.HIGH;
} else if (
numberOfUniqueValues === numberOfAnnotators &&
numberOfUniqueValues > 1
) {
value = 'Indeterminate';
confidence = AggregationConfidenceLevels.LOW;
} else if (
numberOfUniqueValues > Math.ceil(numberOfAnnotators / 2) ||
(mostCommonValueCount < Math.ceil(numberOfAnnotators / 2) &&
numberOfUniqueValues === Math.ceil(numberOfAnnotators / 2) &&
Math.abs(
castToNumber(mostCommonValue, references) -
castToNumber(sorted_counter[1][0], references),
) > 1)
) {
value = 'Indeterminate';
confidence = AggregationConfidenceLevels.LOW;
} else if (
numberOfUniqueValues == 2 &&
Math.abs(
castToNumber(mostCommonValue, references) -
castToNumber(sorted_counter[1][0], references),
) < 2
) {
value = mostCommonValue;
confidence = AggregationConfidenceLevels.MEDIUM;
} else {
value = mostCommonValue;
confidence = AggregationConfidenceLevels.LOW;
}
return {
value: value,
std: Math.round((std + Number.EPSILON) * 100) / 100,
confidence: confidence,
};
},
};
/**
* Returns unions of all scores
* NOTE: Applies only to array of numbers or strings
*/
export const unionAggregator: Aggregator = {
name: 'union',
displayName: 'Union',
apply: (scores: number[][] | string[][]): (number | string)[] => {
return union(...scores);
},
};
/**
* Returns intersection of all scores
* NOTE: Applies only to array of numbers or strings
*/
export const intersectionAggregator: Aggregator = {
name: 'intersection',
displayName: 'Intersection',
apply: (scores: number[][] | string[][]): (number | string)[] => {
return intersection(...scores);
},
};
/**
* Returns majority of all scores
* NOTE: Applies only to array of numbers or strings
*/
export const majorityUnionAggregator: Aggregator = {
name: 'majority',
displayName: 'Majority',
apply: (scores: number[][] | string[][]): (number | string)[] => {
// Step 1: Determine number of annotators
const numberOfAnnotators = scores.length;
const annotatorIds = range(numberOfAnnotators);
// Step 2: Create combination of annotators
const annotatorIdCombinations: number[][] = [];
for (
let size = numberOfAnnotators;
size >= Math.ceil(numberOfAnnotators / 2);
size--
) {
for (
let startIdx = 0;
startIdx + size <= numberOfAnnotators;
startIdx++
) {
annotatorIdCombinations.push(
annotatorIds.slice(startIdx, startIdx + size),
);
}
}
// Step 3: Combine relevant contexts chosen by at least majority of annotators
return union(
...annotatorIdCombinations.map((annotatorIdCombination) => {
return intersection(
...annotatorIdCombination.map((annotatorId) => scores[annotatorId]),
);
}),
);
},
};
|