Spaces:
Running
Running
File size: 14,572 Bytes
599f646 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 |
/**
*
* Copyright 2023-2024 InspectorRAGet Team
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
**/
import { isEmpty, isNumber } from 'lodash';
import { hash } from '@/src/utilities/strings';
import {
Data,
MetricValue,
RawData,
TaskEvaluation,
DisqualificationReason,
DisqualifiedTasks,
Task,
Document,
Notification,
} from '@/src/types';
export const DataErrorKinds = {
MISSING_METRIC: 'MISSING METRIC',
MISSING_MODEL: 'MISSING MODEL',
MISSING_VALUE: 'MISSING VALUE',
};
function sortMetricValues(values: MetricValue[]) {
values.sort((a, b) => {
// For string values
if (typeof a.value === 'string' && typeof b.value === 'string') {
// Do direct value comparison in numerical values exists
if (
(a.numericValue != undefined || a.numericValue != null) &&
isNumber(a.numericValue) &&
(b.numericValue != undefined || b.numericValue != null) &&
isNumber(b.numericValue)
) {
return a.numericValue - b.numericValue;
}
// Do string comparison with non-ASCII support
return a.value.localeCompare(b.value);
}
// For numerical values, do direct value comparison
else if (typeof a.value === 'number' && typeof b.value === 'number') {
return a.value - b.value;
}
// Default: Preserve same order
return 0;
});
}
function disqualifyEvaluation(
reasons: DisqualificationReason[],
evaluation: TaskEvaluation,
disqualifiedTasks: DisqualifiedTasks,
evaluationsPerTask: { [key: string]: TaskEvaluation[] },
) {
// Step 1: Move from evaluations per task list to disqualified tasks list, if required
if (evaluationsPerTask.hasOwnProperty(evaluation.taskId)) {
// Step 1.a: Copy task to remove
const qualifiedEvaluations = evaluationsPerTask[evaluation.taskId];
// Step 1.b: Remove task from qualified tasks list
delete evaluationsPerTask[evaluation.taskId];
// Step 1.c: Add to disqualified tasks list
disqualifiedTasks[evaluation.taskId] = {
reasons: reasons,
evaluations: [...qualifiedEvaluations, evaluation],
};
} else {
// Step 1: Add to disqualified tasks list
if (disqualifiedTasks.hasOwnProperty(evaluation.taskId)) {
disqualifiedTasks[evaluation.taskId].reasons = [
...disqualifiedTasks[evaluation.taskId].reasons,
...reasons,
];
disqualifiedTasks[evaluation.taskId].evaluations.push(evaluation);
} else {
disqualifiedTasks[evaluation.taskId] = {
reasons: reasons,
evaluations: [evaluation],
};
}
}
}
export function processData(
data: RawData,
): [Data, DisqualifiedTasks, Notification[]] {
// Step 0: Define notifications
const notifications: Notification[] = [];
// Step 1: Identify all plottable metrics and required model IDs
const plottableMetrics = data.metrics.filter(
(metric) => metric.type === 'numerical' || metric.type === 'categorical',
);
const requiredModelIDs = new Set(data.models.map((model) => model.modelId));
/**
* Step 2: Disqualify tasks based on following guidelines
* 1. Only preserve evaluations for models specified in the models sections
* 2. If task does not have evaluations for all the models from models section
* 3. If task does not have every metric from metrics section for all the models from models section
*/
const disqualifiedTasks: DisqualifiedTasks = {};
const evaluationsPerTask: { [key: string]: TaskEvaluation[] } = {};
// Step 2.a: Iterate over every evaluation entry
data.evaluations.forEach((evaluation) => {
// Step 2.a.i: Verfify annotations for all plottable metrics exist
const disqualificationReasons: DisqualificationReason[] = [];
plottableMetrics.forEach((metric) => {
if (!evaluation.annotations.hasOwnProperty(metric.name)) {
disqualificationReasons.push({
kind: DataErrorKinds.MISSING_METRIC,
data: metric.name,
});
} else {
if (isEmpty(evaluation.annotations[metric.name])) {
disqualificationReasons.push({
kind: DataErrorKinds.MISSING_VALUE,
data: metric.name,
});
} else {
for (const evaluator of Object.keys(
evaluation.annotations[metric.name],
)) {
if (
!evaluation.annotations[metric.name][evaluator].hasOwnProperty(
'value',
)
) {
disqualificationReasons.push({
kind: DataErrorKinds.MISSING_VALUE,
data: metric.name,
});
}
}
}
}
});
// Step 2.a.ii: If annotations for all plottable metrics exist
if (isEmpty(disqualificationReasons)) {
// Step 2.a.ii.*: Only add if evaluation belongs to one of the models specified in the models section
if (requiredModelIDs.has(evaluation.modelId)) {
if (evaluationsPerTask.hasOwnProperty(evaluation.taskId)) {
evaluationsPerTask[evaluation.taskId].push(evaluation);
} else {
if (disqualifiedTasks.hasOwnProperty(evaluation.taskId)) {
disqualifiedTasks[evaluation.taskId].evaluations.push(evaluation);
} else {
evaluationsPerTask[evaluation.taskId] = [evaluation];
}
}
}
} else {
// Step 2.a.ii: Disqualify evaluation and associated task
disqualifyEvaluation(
disqualificationReasons,
evaluation,
disqualifiedTasks,
evaluationsPerTask,
);
}
});
// Step 3.: Verify evaluations exist for every model from the models section
// Step 3.a: Check first in all disqualified tasks
Object.keys(disqualifiedTasks).forEach((taskId) => {
// Step 3.a.i: If more or less number of evaluations exists
if (disqualifiedTasks[taskId].evaluations.length !== data.models.length) {
const availableModelIDs = new Set(
disqualifiedTasks[taskId].evaluations.map(
(evaluation) => evaluation.modelId,
),
);
// Step 3.a.i.*: Missing model IDs
const missingModelIDs = [...requiredModelIDs].filter(
(modelId) => !availableModelIDs.has(modelId),
);
// Step 3.a.i.**: Update disqualified task's reasons
if (!isEmpty(missingModelIDs)) {
disqualifiedTasks[taskId].reasons = [
...disqualifiedTasks[taskId].reasons,
...missingModelIDs.map((modelId) => {
return { kind: DataErrorKinds.MISSING_MODEL, data: modelId };
}),
];
}
}
});
// Step 3.b: Check in qualified tasks
Object.keys(evaluationsPerTask).forEach((taskId) => {
// Step 3.b.i: If more or less number of evaluations exists
if (data.models.length !== evaluationsPerTask[taskId].length) {
const availableModelIDs = new Set(
evaluationsPerTask[taskId].map((evaluation) => evaluation.modelId),
);
// Step 3.b.i.*: Missing model IDs
const missingModelIDs = [...requiredModelIDs].filter(
(modelId) => !availableModelIDs.has(modelId),
);
// Step 3.b.i.**: Move task from qualified task list to disqualified task list
if (!isEmpty(missingModelIDs)) {
const disqualifiedEvaluations = evaluationsPerTask[taskId];
disqualifiedTasks[taskId] = {
reasons: missingModelIDs.map((modelId) => {
return { kind: DataErrorKinds.MISSING_MODEL, data: modelId };
}),
evaluations: disqualifiedEvaluations,
};
delete evaluationsPerTask[taskId];
}
}
});
// Step 5: Flatten qualified tasks into qualified evaluations list
// Step 5.a: Retain unique qaulified task ID, annotator and qualified evaluation
const uniqueQuailifiedTaskIds = new Set<string>();
const annotators = new Set<string>();
const qualifiedEvaluations: TaskEvaluation[] = [];
// Step 5.b: Iterate over each qualified task
Object.keys(evaluationsPerTask).forEach((taskId) => {
uniqueQuailifiedTaskIds.add(taskId);
evaluationsPerTask[taskId].forEach((evaluation) => {
Object.keys(evaluation.annotations).forEach((metric) => {
const entry = evaluation.annotations[metric];
Object.keys(entry).forEach((annotator) => annotators.add(annotator));
});
qualifiedEvaluations.push(evaluation);
});
});
// Step 6: Create a list of qualified tasks
const tasksMap = new Map(
data.tasks.map((task) => {
return [task.taskId, task];
}),
);
const qualifiedTasks: Task[] = [];
Array.from(uniqueQuailifiedTaskIds).forEach((taskId) => {
const task = tasksMap.get(taskId);
if (task) {
qualifiedTasks.push(task);
}
});
// Step 7: Add warning notification, if qualified tasks has invalid task type
for (const task of qualifiedTasks) {
if (
task.taskType === 'question_answering' ||
task.taskType === 'conversation'
) {
// Add notification
notifications.push({
kind: 'warning',
title: `Deprecation warning for "${task.taskType}" task type.`,
subtitle: 'Please migrate to using "rag" task type instead.',
});
// Exit
break;
}
}
return [
{
name: data.name || 'Example',
exampleId: hash(JSON.stringify(data)),
models: data.models,
metrics: data.metrics.map((metric) => {
// Step 1: Sort metric values, if present
if (metric.values) {
sortMetricValues(metric.values);
}
// Step 2: Return with additional attributes
return {
...metric,
...(metric.type === 'categorical' &&
metric.values && {
minValue: metric.values[0],
maxValue: metric.values[metric.values.length - 1],
}),
...(metric.type === 'numerical' &&
metric.range &&
metric.range.length >= 2 && {
minValue: metric.range[0],
maxValue: metric.range[1],
}),
};
}),
...(data.filters && { filters: data.filters }),
tasks: qualifiedTasks.map((task) => {
return {
...task,
taskType:
task.taskType === 'question_answering' ||
task.taskType === 'conversation'
? 'rag'
: task.taskType,
};
}),
documents: data.documents,
evaluations: qualifiedEvaluations,
annotators: Array.from(annotators),
numTasks: qualifiedTasks.length,
},
disqualifiedTasks,
notifications,
];
}
export function exportData(
data: Data | undefined,
tasks: Task[] | undefined,
): boolean {
// Step 0: Verify if data is provided
if (data) {
let dataToExport: RawData = {
name: data.name,
...(data.exampleId && { exampleId: data.exampleId }),
models: data.models,
metrics: data.metrics,
...(data.documents && {
documents: data.documents,
}),
tasks: data.tasks,
evaluations: data.evaluations,
};
// Step 1: If tasks are defined
if (tasks) {
// Step 0: update flagged property
tasks.forEach((task) => {
if (!task.hasOwnProperty('flagged')) {
task.flagged = false;
}
});
// Step 1.a: Create reduced analytics data, if not all tasks are specified
if (data.tasks.length !== tasks.length) {
// Step 1.a.i: Build documents map
const documentsMap: Map<string, Document> = new Map(
data.documents?.map((document) => [document.documentId, document]),
);
// Step 1.a.ii: Necessary variables
const relevantDocuments: Set<Document> = new Set<Document>();
const relevantTaskIds: Set<string> = new Set<string>();
// Step 1.a.iii: Iterate over tasks to identify referened documents/relevant context
tasks.forEach((task) => {
// Add task ID to relevant task ID set
relevantTaskIds.add(task.taskId);
if (documentsMap.size !== 0) {
task.contexts.forEach((context) => {
// Add referenced document to relevant documents list
if (typeof context !== 'string') {
const referenceDocument = documentsMap.get(context.documentId);
if (referenceDocument) {
relevantDocuments.add(referenceDocument);
}
}
});
}
});
// Step 1.a.iv: Create an object to be exported
dataToExport = {
name: data.name,
...(data.exampleId && { exampleId: data.exampleId }),
models: data.models,
metrics: data.metrics,
...(relevantDocuments.size !== 0 && {
documents: Array.from(relevantDocuments),
}),
tasks: tasks,
evaluations: data.evaluations.filter((evaluation) =>
relevantTaskIds.has(evaluation.taskId),
),
};
} else {
// Step 1.b: Create an object to be exported by copying over tasks information
dataToExport = {
name: data.name,
...(data.exampleId && { exampleId: data.exampleId }),
models: data.models,
metrics: data.metrics,
...(data.documents && {
documents: data.documents,
}),
tasks: tasks,
evaluations: data.evaluations,
};
}
}
// Step 2: Create <a> tag
var element = document.createElement('a');
// Step 2.a: Set attributes
element.setAttribute(
'href',
'data:application/json;charset=utf-8, ' +
encodeURIComponent(JSON.stringify(dataToExport)),
);
element.setAttribute('download', 'analytics.json');
// Step 2.b: Add to DOM tree and click it
document.body.appendChild(element);
element.click();
// Step 2.c : Cleanup
document.body.removeChild(element);
// Step 3: Retun "true" indicating success
return true;
}
// Step 3: Retun "false" indicating failure
return false;
}
|