Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,31 +6,32 @@ from langchain.embeddings import HuggingFaceEmbeddings
|
|
| 6 |
from langchain.llms import HuggingFaceHub
|
| 7 |
from langchain.text_splitter import CharacterTextSplitter
|
| 8 |
import cassio
|
| 9 |
-
from dotenv import load_dotenv
|
| 10 |
import os
|
|
|
|
|
|
|
| 11 |
|
|
|
|
| 12 |
load_dotenv()
|
| 13 |
-
|
| 14 |
ASTRA_DB_APPLICATION_TOKEN = os.getenv("ASTRA_DB_APPLICATION_TOKEN")
|
| 15 |
ASTRA_DB_ID = os.getenv("ASTRA_DB_ID")
|
| 16 |
HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
| 17 |
|
| 18 |
-
#
|
| 19 |
-
|
| 20 |
-
st.title("ππ¬ Query PDF using LangChain + AstraDB (Free Hugging Face Models)")
|
| 21 |
|
| 22 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
uploaded_file = st.file_uploader("Upload your PDF", type=["pdf"])
|
| 24 |
|
| 25 |
if uploaded_file:
|
| 26 |
-
st.success("β
PDF uploaded successfully
|
| 27 |
process_button = st.button("π Process PDF")
|
| 28 |
|
| 29 |
if process_button:
|
| 30 |
-
#
|
| 31 |
-
cassio.init(token=ASTRA_DB_APPLICATION_TOKEN, database_id=ASTRA_DB_ID)
|
| 32 |
-
|
| 33 |
-
# Read PDF contents
|
| 34 |
pdf_reader = PdfReader(uploaded_file)
|
| 35 |
raw_text = ""
|
| 36 |
for page in pdf_reader.pages:
|
|
@@ -38,59 +39,56 @@ if uploaded_file:
|
|
| 38 |
if content:
|
| 39 |
raw_text += content
|
| 40 |
|
| 41 |
-
# Split
|
| 42 |
text_splitter = CharacterTextSplitter(
|
| 43 |
separator="\n", chunk_size=800, chunk_overlap=200, length_function=len
|
| 44 |
)
|
| 45 |
texts = text_splitter.split_text(raw_text)
|
| 46 |
|
| 47 |
-
#
|
| 48 |
-
embedding = HuggingFaceEmbeddings(
|
| 49 |
-
model_name="sentence-transformers/all-MiniLM-L6-v2"
|
| 50 |
-
)
|
| 51 |
|
| 52 |
-
#
|
| 53 |
llm = HuggingFaceHub(
|
| 54 |
repo_id="mistralai/Mistral-7B-Instruct-v0.1",
|
| 55 |
huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN,
|
| 56 |
model_kwargs={"temperature": 0.5, "max_new_tokens": 512}
|
| 57 |
)
|
| 58 |
|
| 59 |
-
#
|
|
|
|
|
|
|
|
|
|
| 60 |
vector_store = Cassandra(
|
| 61 |
embedding=embedding,
|
| 62 |
-
table_name=
|
| 63 |
session=None,
|
| 64 |
keyspace=None,
|
| 65 |
)
|
|
|
|
| 66 |
vector_store.add_texts(texts[:50])
|
| 67 |
st.success(f"π {len(texts[:50])} chunks embedded and stored in AstraDB.")
|
| 68 |
|
|
|
|
| 69 |
astra_vector_index = VectorStoreIndexWrapper(vectorstore=vector_store)
|
| 70 |
|
| 71 |
-
#
|
| 72 |
st.header("π€ Ask a question about your PDF")
|
| 73 |
user_question = st.text_input("π¬ Type your question here")
|
| 74 |
|
| 75 |
if user_question:
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
st.write(answer.strip())
|
| 92 |
-
else:
|
| 93 |
-
st.warning("β οΈ The model returned an empty response. Try rephrasing the question or check your model/API key.")
|
| 94 |
-
except Exception as e:
|
| 95 |
-
st.error(f"π¨ Error while generating response:\n\n{str(e)}")
|
| 96 |
-
|
|
|
|
| 6 |
from langchain.llms import HuggingFaceHub
|
| 7 |
from langchain.text_splitter import CharacterTextSplitter
|
| 8 |
import cassio
|
|
|
|
| 9 |
import os
|
| 10 |
+
import uuid
|
| 11 |
+
from dotenv import load_dotenv
|
| 12 |
|
| 13 |
+
# π Load secrets from environment (Hugging Face Spaces uses HF Secrets)
|
| 14 |
load_dotenv()
|
|
|
|
| 15 |
ASTRA_DB_APPLICATION_TOKEN = os.getenv("ASTRA_DB_APPLICATION_TOKEN")
|
| 16 |
ASTRA_DB_ID = os.getenv("ASTRA_DB_ID")
|
| 17 |
HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
| 18 |
|
| 19 |
+
# π§ Initialize AstraDB
|
| 20 |
+
cassio.init(token=ASTRA_DB_APPLICATION_TOKEN, database_id=ASTRA_DB_ID)
|
|
|
|
| 21 |
|
| 22 |
+
# π¨ Streamlit UI Setup
|
| 23 |
+
st.set_page_config(page_title="Query PDF with LangChain", layout="wide")
|
| 24 |
+
st.title("ππ¬ Query PDF using LangChain + AstraDB (Hugging Face Models)")
|
| 25 |
+
|
| 26 |
+
# π PDF Upload
|
| 27 |
uploaded_file = st.file_uploader("Upload your PDF", type=["pdf"])
|
| 28 |
|
| 29 |
if uploaded_file:
|
| 30 |
+
st.success("β
PDF uploaded successfully.")
|
| 31 |
process_button = st.button("π Process PDF")
|
| 32 |
|
| 33 |
if process_button:
|
| 34 |
+
# π§Ύ Read PDF
|
|
|
|
|
|
|
|
|
|
| 35 |
pdf_reader = PdfReader(uploaded_file)
|
| 36 |
raw_text = ""
|
| 37 |
for page in pdf_reader.pages:
|
|
|
|
| 39 |
if content:
|
| 40 |
raw_text += content
|
| 41 |
|
| 42 |
+
# βοΈ Split into Chunks
|
| 43 |
text_splitter = CharacterTextSplitter(
|
| 44 |
separator="\n", chunk_size=800, chunk_overlap=200, length_function=len
|
| 45 |
)
|
| 46 |
texts = text_splitter.split_text(raw_text)
|
| 47 |
|
| 48 |
+
# π§ Embeddings
|
| 49 |
+
embedding = HuggingFaceEmbeddings(model_name="intfloat/e5-base-v2")
|
|
|
|
|
|
|
| 50 |
|
| 51 |
+
# π€ LLM
|
| 52 |
llm = HuggingFaceHub(
|
| 53 |
repo_id="mistralai/Mistral-7B-Instruct-v0.1",
|
| 54 |
huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN,
|
| 55 |
model_kwargs={"temperature": 0.5, "max_new_tokens": 512}
|
| 56 |
)
|
| 57 |
|
| 58 |
+
# ποΈ Unique Table Name for Each PDF Upload
|
| 59 |
+
table_name = "qa_" + str(uuid.uuid4()).replace("-", "_")
|
| 60 |
+
|
| 61 |
+
# π¦ Vector Store Setup
|
| 62 |
vector_store = Cassandra(
|
| 63 |
embedding=embedding,
|
| 64 |
+
table_name=table_name,
|
| 65 |
session=None,
|
| 66 |
keyspace=None,
|
| 67 |
)
|
| 68 |
+
|
| 69 |
vector_store.add_texts(texts[:50])
|
| 70 |
st.success(f"π {len(texts[:50])} chunks embedded and stored in AstraDB.")
|
| 71 |
|
| 72 |
+
# π Setup Index
|
| 73 |
astra_vector_index = VectorStoreIndexWrapper(vectorstore=vector_store)
|
| 74 |
|
| 75 |
+
# π¬ Ask Questions
|
| 76 |
st.header("π€ Ask a question about your PDF")
|
| 77 |
user_question = st.text_input("π¬ Type your question here")
|
| 78 |
|
| 79 |
if user_question:
|
| 80 |
+
with st.spinner("π§ Thinking..."):
|
| 81 |
+
try:
|
| 82 |
+
# Retrieve relevant context (used internally, not displayed)
|
| 83 |
+
retrieved_docs = vector_store.similarity_search(user_question, k=8)
|
| 84 |
+
if not retrieved_docs:
|
| 85 |
+
st.warning("β οΈ No relevant text found. Try rephrasing your question.")
|
| 86 |
+
else:
|
| 87 |
+
answer = astra_vector_index.query(user_question, llm=llm)
|
| 88 |
+
if answer.strip():
|
| 89 |
+
st.markdown("### π§ Answer:")
|
| 90 |
+
st.write(answer.strip())
|
| 91 |
+
else:
|
| 92 |
+
st.warning("β οΈ Model returned an empty response.")
|
| 93 |
+
except Exception as e:
|
| 94 |
+
st.error(f"π¨ Error: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|