Spaces:
Runtime error
Runtime error
Create app_sketch.py
Browse files- app_sketch.py +165 -0
app_sketch.py
ADDED
|
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import PIL.Image
|
| 4 |
+
import torch
|
| 5 |
+
import torchvision.transforms.functional as TF
|
| 6 |
+
|
| 7 |
+
from model import Model
|
| 8 |
+
from utils import (
|
| 9 |
+
DEFAULT_STYLE_NAME,
|
| 10 |
+
MAX_SEED,
|
| 11 |
+
STYLE_NAMES,
|
| 12 |
+
apply_style,
|
| 13 |
+
randomize_seed_fn,
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def create_demo(model: Model) -> gr.Blocks:
|
| 18 |
+
def run(
|
| 19 |
+
image: PIL.Image.Image,
|
| 20 |
+
prompt: str,
|
| 21 |
+
negative_prompt: str,
|
| 22 |
+
style_name: str = DEFAULT_STYLE_NAME,
|
| 23 |
+
num_steps: int = 25,
|
| 24 |
+
guidance_scale: float = 5,
|
| 25 |
+
adapter_conditioning_scale: float = 0.8,
|
| 26 |
+
adapter_conditioning_factor: float = 0.8,
|
| 27 |
+
seed: int = 0,
|
| 28 |
+
progress=gr.Progress(track_tqdm=True),
|
| 29 |
+
) -> PIL.Image.Image:
|
| 30 |
+
image = image.convert("RGB")
|
| 31 |
+
image = TF.to_tensor(image) > 0.5
|
| 32 |
+
image = TF.to_pil_image(image.to(torch.float32))
|
| 33 |
+
|
| 34 |
+
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
|
| 35 |
+
|
| 36 |
+
return model.run(
|
| 37 |
+
image=image,
|
| 38 |
+
prompt=prompt,
|
| 39 |
+
negative_prompt=negative_prompt,
|
| 40 |
+
adapter_name="sketch",
|
| 41 |
+
num_inference_steps=num_steps,
|
| 42 |
+
guidance_scale=guidance_scale,
|
| 43 |
+
adapter_conditioning_scale=adapter_conditioning_scale,
|
| 44 |
+
adapter_conditioning_factor=adapter_conditioning_factor,
|
| 45 |
+
seed=seed,
|
| 46 |
+
apply_preprocess=False,
|
| 47 |
+
)[1]
|
| 48 |
+
|
| 49 |
+
with gr.Blocks() as demo:
|
| 50 |
+
with gr.Row():
|
| 51 |
+
with gr.Column():
|
| 52 |
+
with gr.Group():
|
| 53 |
+
image = gr.Image(
|
| 54 |
+
source="canvas",
|
| 55 |
+
tool="sketch",
|
| 56 |
+
type="pil",
|
| 57 |
+
image_mode="L",
|
| 58 |
+
invert_colors=True,
|
| 59 |
+
shape=(1024, 1024),
|
| 60 |
+
brush_radius=4,
|
| 61 |
+
height=600,
|
| 62 |
+
)
|
| 63 |
+
prompt = gr.Textbox(label="Prompt")
|
| 64 |
+
style = gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
|
| 65 |
+
run_button = gr.Button("Run")
|
| 66 |
+
with gr.Accordion("Advanced options", open=False):
|
| 67 |
+
negative_prompt = gr.Textbox(
|
| 68 |
+
label="Negative prompt",
|
| 69 |
+
value=" extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured",
|
| 70 |
+
)
|
| 71 |
+
num_steps = gr.Slider(
|
| 72 |
+
label="Number of steps",
|
| 73 |
+
minimum=1,
|
| 74 |
+
maximum=50,
|
| 75 |
+
step=1,
|
| 76 |
+
value=25,
|
| 77 |
+
)
|
| 78 |
+
guidance_scale = gr.Slider(
|
| 79 |
+
label="Guidance scale",
|
| 80 |
+
minimum=0.1,
|
| 81 |
+
maximum=10.0,
|
| 82 |
+
step=0.1,
|
| 83 |
+
value=5,
|
| 84 |
+
)
|
| 85 |
+
adapter_conditioning_scale = gr.Slider(
|
| 86 |
+
label="Adapter conditioning scale",
|
| 87 |
+
minimum=0.5,
|
| 88 |
+
maximum=1,
|
| 89 |
+
step=0.1,
|
| 90 |
+
value=0.8,
|
| 91 |
+
)
|
| 92 |
+
adapter_conditioning_factor = gr.Slider(
|
| 93 |
+
label="Adapter conditioning factor",
|
| 94 |
+
info="Fraction of timesteps for which adapter should be applied",
|
| 95 |
+
minimum=0.5,
|
| 96 |
+
maximum=1,
|
| 97 |
+
step=0.1,
|
| 98 |
+
value=0.8,
|
| 99 |
+
)
|
| 100 |
+
seed = gr.Slider(
|
| 101 |
+
label="Seed",
|
| 102 |
+
minimum=0,
|
| 103 |
+
maximum=MAX_SEED,
|
| 104 |
+
step=1,
|
| 105 |
+
value=0,
|
| 106 |
+
)
|
| 107 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 108 |
+
with gr.Column():
|
| 109 |
+
result = gr.Image(label="Result", height=600)
|
| 110 |
+
|
| 111 |
+
inputs = [
|
| 112 |
+
image,
|
| 113 |
+
prompt,
|
| 114 |
+
negative_prompt,
|
| 115 |
+
style,
|
| 116 |
+
num_steps,
|
| 117 |
+
guidance_scale,
|
| 118 |
+
adapter_conditioning_scale,
|
| 119 |
+
adapter_conditioning_factor,
|
| 120 |
+
seed,
|
| 121 |
+
]
|
| 122 |
+
prompt.submit(
|
| 123 |
+
fn=randomize_seed_fn,
|
| 124 |
+
inputs=[seed, randomize_seed],
|
| 125 |
+
outputs=seed,
|
| 126 |
+
queue=False,
|
| 127 |
+
api_name=False,
|
| 128 |
+
).then(
|
| 129 |
+
fn=run,
|
| 130 |
+
inputs=inputs,
|
| 131 |
+
outputs=result,
|
| 132 |
+
api_name=False,
|
| 133 |
+
)
|
| 134 |
+
negative_prompt.submit(
|
| 135 |
+
fn=randomize_seed_fn,
|
| 136 |
+
inputs=[seed, randomize_seed],
|
| 137 |
+
outputs=seed,
|
| 138 |
+
queue=False,
|
| 139 |
+
api_name=False,
|
| 140 |
+
).then(
|
| 141 |
+
fn=run,
|
| 142 |
+
inputs=inputs,
|
| 143 |
+
outputs=result,
|
| 144 |
+
api_name=False,
|
| 145 |
+
)
|
| 146 |
+
run_button.click(
|
| 147 |
+
fn=randomize_seed_fn,
|
| 148 |
+
inputs=[seed, randomize_seed],
|
| 149 |
+
outputs=seed,
|
| 150 |
+
queue=False,
|
| 151 |
+
api_name=False,
|
| 152 |
+
).then(
|
| 153 |
+
fn=run,
|
| 154 |
+
inputs=inputs,
|
| 155 |
+
outputs=result,
|
| 156 |
+
api_name=False,
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
return demo
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
if __name__ == "__main__":
|
| 163 |
+
model = Model("sketch")
|
| 164 |
+
demo = create_demo(model)
|
| 165 |
+
demo.queue(max_size=20).launch()
|